
Ray Tracing CSG Objects Using Single Hit Intersections

Andrew Kensler

April 10, 2006

1 Introduction

Typical approaches to rendering constructive solid geometry (CSG) require finding all intersections of a line with a primitive
and then computing the intersections by examining the intervals. Due to the memory costs to store all of the intersections,
and the computational costs needed to compute and order them, this approach can be quite expensive.

Moreover, many modern ray tracers support finding only the single nearest intersection. The approach described here
computes intersections with binary CSG objects using this style of intersection. Though it may need to do several of these
per sub-object, the usual number needed is quite low. The only limitation of this algorithm is that the sub-objects be closed,
non-self-intersecting and have consistently oriented normals.

2 Example: Intersecting a Union

Consider a simple union of two overlapping spheres as shown in Figure 1:

A B

Figure 1: Union of two spheres from outside

The CSG union of two objects is the combined parts of the boundary from each that is not in the interior of the other
object. To find the closest intersection of a ray with the union of the two spheres, we need to find the closest intersection of
either sphere such that it is not inside the other sphere. In the case above, that would be the first intersection withA.

How can a ray tracer know this? One way is to shoot the ray at each of the sub-objects. Let the ray be defined parametricly
as ~O + t ~D and let the nearest intersection withA be att = tA wheretA > minA and the normal at the hitpoint be~NA, and
similarly for B. Initially, minA andminB are both 0.

Note that the~D · ~NA < 0 at the nearest intersection withA. The surface normal points back along the direction of the
ray. Since the object is closed and non-self intersecting, this means thatO must have been outsideA. (Likewise, ~O is also
outsideB.) Since the intersection withA is the closer of the two, that is the nearest intersection with the union.

Now suppose that we instead shot the ray from inside the union, as shown in Figure 2:
Here the situation is more complicated. The intersection withB is closer than that withA, but ~D · ~NA > 0 is positive,

meaning that the intersection withB is inside ofA, so we must disallow it. In this case, we can setminB to tB and shoot
the ray atB again, this time finding the intersection on the far side ofB.

1

A B

Figure 2: Union of two spheres from inside

The closest intersection is now with the far side ofA, but ~D · ~NB > 0 so the intersection withA is on the interior ofB
and must again be disallowed. So as before, we can setminA to tA and shoot again to consider the next intersection withA
– this time, no intersection withA will be found.

At this point, there are no more intersections withA, but there is one with the far side ofB. Since that intersection can’t
be inside ofA (if it were, we’d still have an intersection withA to consider), the intersection with the far side ofB must be
the intersection with the union and so we return it.

Of course, if there was no intersection with eitherA or B, then there can’t be an intersection with their union.

3 The State Table

Less abstractly, the approach above could be implemented by starting initializingminA andminB to zero, shooting a ray
at each subobject to find the intersection with thet > min and classifying the intersections with the subobject as one of
entering, exiting or missing it. Based upon the combination of the two, one of several actions might be taken: either returning
a hit, return a miss, or setmin = t for one of the objects and then shoot a ray and classify it again. If put into a table, the
basic actions look like looks like Table 1:

Enter B Exit B Miss B
Enter A Return A if closer, else return B if closer Return B if closer, else advance A and loop Return A
Exit A Return A if closer, else advance B and loop Return A if farther, else return B if farther Return A
Miss A Return B Return B Return miss

Table 1: A State Table

With a few additions to the list of possible actions, the algorithm can be made to work for CSG difference and CSG
intersection objects as well. The total list of actions is shown in Table 2:

ReturnMiss Exit, reporting no intersection
ReturnAIfCloser Return the intersection with A if it is closer
ReturnAIfFarther Return the intersection with A if it is farther

ReturnA Always return the intersection with A
ReturnBIfCloser Return the intersection with B if it is closer
ReturnBIfFarther Return the intersection with B if it is farther

ReturnB Always return the intersection with B
FlipB If returning an intersection with B, flip its normal

AdvanceAAndLoop Continue with the next intersection with A
AdvanceBAndLoop Continue with the next intersection with B

Table 2: Actions

2

4 Putting it all together

With these, the state tables for CSG union, difference and intersection are shown without derivation in Table 3. Pseudocode
for the intersection algorithm to execute these tables is also given below.

Union Enter B Exit B Miss B
Enter A { ReturnAIfCloser, ReturnBIfCloser} { ReturnBIfCloser, AdvanceAAndLoop} { ReturnA}
Exit A { ReturnAIfCloser, AdvanceBAndLoop} { ReturnAIfFarther, ReturnBIfFarther} { ReturnA}
Miss A { ReturnB} { ReturnB} { ReturnMiss}

Difference Enter B Exit B Miss B
Enter A { ReturnAIfCloser, AdvanceBAndLoop} { ReturnAIfFarther, AdvanceAAndLoop} { ReturnA}
Exit A { ReturnAIfCloser, ReturnBIfCloser, FlipB} { ReturnBIfCloser, FlipB, AdvanceAAndLoop} { ReturnA}
Miss A { ReturnMiss} { ReturnMiss} { ReturnMiss}

Intersection Enter B Exit B Miss B
Enter A { ReturnAIfFarther, ReturnBIfFarther} { ReturnAIfCloser, AdvanceBAndLoop} { ReturnMiss}
Exit A { ReturnBIfCloser, AdvanceAAndLoop} { ReturnAIfCloser, ReturnBIfCloser} { ReturnMiss}
Miss A { ReturnMiss} { ReturnMiss} { ReturnMiss}

Table 3: State Tables for CSG Operations

Algorithm 1 Pseudocode for CSG intersection routine
minA = 0
minB = 0
(tA, ~NA) = IntersectWithA(~O, ~D, minA)
(tB , ~NB) = IntersectWithB(~O, ~D, minB)
stateA = ClassifyEnterExitOrMiss(tA, ~NA)
stateB = ClassifyEnterExitOrMiss(tB , ~NB)
loop

action = table [stateA, stateB]
if ReturnMiss∈ action then

return miss
else if ReturnA∈ action or

(ReturnAIfCloser∈ action andtA ≤ tB) or
(ReturnAIfFarther∈ action andtA > tB) then

return tA, ~NA

else if ReturnB∈ action or
(ReturnBIfCloser∈ action andtB ≤ tA) or
(ReturnBIfFarther∈ action andtB > tA) then

if FlipB ∈ action then
NB = −NB

end if
return tB , ~NB

else if AdvanceAAndLoop∈ action then
minA = tA
(tA, ~NA) = IntersectWithA(~O, ~D, minA)
stateA = ClassifyEnterExitOrMiss(tA, ~NA)

else if AdvanceBAndLoop∈ action then
minB = tB
(tB , ~NB) = IntersectWithB(~O, ~D, minB)
stateB = ClassifyEnterExitOrMiss(tB , ~NB)

end if
end loop

3

	Introduction
	Example: Intersecting a Union
	The State Table
	Putting it all together

