
XRT Technical Reference
Release 1.0.3

August 28, 2010

CONTENTS

I Introduction 1

II The Major APIs 5

1 The XRT C++ Scene API 7
1.1 Basic Concepts . 7
1.2 Parameters . 10
1.3 Renderers, Cameras, Outputs, and Rendering . 11
1.4 Attributes . 14
1.5 Transformations . 17
1.6 Shaders and Lights . 19
1.7 Motion Blur . 21
1.8 Geometric Primitives . 22
1.9 Constructive Solid Geometry . 29
1.10 Object Instancing . 30
1.11 Procedural Geometry Generators and Scene Files . 31
1.12 Error Management . 32
1.13 Example Scene Specification . 34

2 Pyg: A Python-Based Scene File Format 37
2.1 Motivation . 37
2.2 Basics . 38
2.3 API Calls . 38
2.4 Example Pyg Scene File . 42
2.5 Calling xrt from Python . 43

3 XRT Attributes and Commands 45
3.1 Camera Attributes . 45
3.2 Output Attributes . 47
3.3 Scene-wide Attributes . 48
3.4 Per-object Attributes . 49

4 Shading Language 53
4.1 Unimplemented features . 53
4.2 Extensions . 53

III Using XRT 55

5 Running XRT 57

i

5.1 xrt Command Line Operation . 57
5.2 Environment variables . 57

6 Cameras and Image Output 59
6.1 The Camera . 59
6.2 Image Resolution and Framing . 63
6.3 Image Output . 64
6.4 XRT‘s Bundled Image I/O Plugins . 65
6.5 Antialiasing and Filtering . 66

7 Using Shaders 69
7.1 Shader Basics . 69
7.2 Compiling Shaders with slc . 69

8 Textures 71
8.1 Converting images to texture with maketx . 71
8.2 Texture Formats . 72

9 Writing Plugins 73
9.1 Generator Plugins and Scene File Readers . 73
9.2 Shape Plugins . 74

IV Appendices 75

10 Glossary 77

Index 81

ii

Part I

Introduction

1

XRT Technical Reference, Release 1.0.3

Welcome to XRT!

XRT is a software rendering system designed to flexibly create beautiful imagery for film and other high-end applica-
tions.

This technical reference manual documents:

• a C++ scene description API

• a Python binding

• a shading language

• a shader compiler

• a texture tool

• and of course, the renderer itself

Acknowledgements

This document is mostly based on NVIDIA Gelato(R) Technical Reference 1 (with some additions to support the Ren-
derMan(R) Specification 3.2). It could have been written as a long list of the differences with the original specification
but this would have been detrimental to its readability and consistency. It is also much more positive to list capabilities
instead of deficiencies.

As a result, this document includes large parts from the Gelato specification document. My hope is that, in its present
form, it will be considered as a necessary tribute to a well-written specification.

Feature highlights

Before you dig deeper in the manual, I’d like to call your attention to some of the really interesting features of XRT

• Ray tracing. XRT is capable of ray tracing of large scenes, including raytraced shadows, reflections and “am-
bient occlusion” visibility queries.

• C++ API. XRT‘s main API is a modern, C++-based API. It is simple (few calls) and orthogonal (usually one
best way to accomplish a task). There are only a few types of geometric primitives, but they are very general.
All object and scene attributes (such as surface color or camera shutter) are set through a single Attribute
call. Custom variables (such as shader parameters and geometric primitive “vertex variables”) are set through a
single, simple Parameter call.

• State queries and saved state. A program or plug-in making C++ API calls to XRT may ask for the current
value of any graphics state attribute. There are also calls in XRT‘s API’s to save all or part of the current state,
name it, and later restore all or part of that saved state. This makes it possible to easily transfer collections of
attributes from one part of your scene hierarchy to another, non-descended, place in the hierarchy.

• Scene format reader plug-ins. XRT is “format agnostic.” Rather than prescribing a single scene file format
(forcing you to convert all data into that format), XRT has a simple API for scene format plug-ins. When a file
is input, the DSO/DLL for that format is dynamically loaded and told to read the scene file. Thus, you may
store your scene in any format for which you, or a third party provide such a plug-in, and you may freely mix
different files in different formats within a single scene.

• Python binding. XRT includes a scene format plug-in that reads Python scripts that make calls to the C++ API.
This provides an extremely flexible, fully scriptable method of scene input.

• Layered shaders. Instead of allowing only a single surface, displacement, and volume shader per object, XRT
allows, for example, several surface shaders to be called in turn, with the user able to specify that one shader’s
outputs be connected to another shader’s inputs. This allows one to compose the operations of component
shaders without modifying (or even having access to) the source code of any of the shaders involved. For
example, you can make any surface glossy by layering a “gloss” shader atop any other shader, without needing
the source code to either.

1 Nevertheless, XRT does not claim to be Gelato-compliant.

3

XRT Technical Reference, Release 1.0.3

• Place the camera, not the world. The XRT universe starts off in world space. You may place a Camera within
that world, just like you would place lights or objects. (In fact, you can even place multiple cameras, although
currently only the first declared camera is rendered) There is no need to treat the camera as the original origin,
carefully placing the world with the inverse transformation. Of course, if there is no Camera at all, XRT correctly
infers that you intended the original coordinate system to be the camera, and that world space is marked by the
World call.

• Geometry sets. It is possible to name groups of primitives (and of course, one primitive may be in many
groups). These named geometry sets may be used to specify collections of primitives visible by a particular
camera, used for ray tracing, comprising area lights, and potentially for many other future uses.

• Image I/O plug-ins. Similar to XRT‘s scene format agnosticism, XRT also has no required image formats for
either input or output. There is a simple API for writing plugins that read and write image formats. An image
output plug-in can allow you to have the renderer write out image files in the format of your choice, and image
input plugins can be used to read texture, display images, and convert images from one format to another. XRT
ships with image I/O plug-ins for TIFF, JPEG, PPM, PNG, and Targa formats, as well as one for displaying to
an interactive image viewer.

4

Part II

The Major APIs

5

CHAPTER

ONE

THE XRT C++ SCENE API

This chapter describes XRT‘s C++ API for describing scenes. XRT‘s API routines can loosely be broken down into
those that alter the graphics state attributes, and those that create geometric primitives. Some attributes are properties
that apply to the entire scene (for example, camera parameters), but other attributes are properties that may vary from
object to objects (for example, color, shader assignments, and transformation). Geometric primitives, when declared,
inherit the current attribute state (including transformations and shader assignments).

1.1 Basic Concepts

1.1.1 Classes, Namespaces, and Headers

The primary API for talking XRT is through a C++ class called RendererAPI, which is defined in the header file
rendererapi.h.

A number of other header files contain useful types, classes, and functions:

• type.h is used by rendererapi.h and provides a way to express data types to certain XRT API routines.

• errormanager.h is used by rendererapi.h and provides a definition of overrideable error managers
and handlers.

The definitions in the above header files are in namespace xrt. You may reference these types and functions either
by explicitly using the xrt:: prefix, or by simply stating

using namespace xrt;

after including the header files (then the prefixes are unnecessary). For brevity, the remainder of the Technical Refer-
ence will assume that you are using namespace xrt, and will therefore omit the xrt:: prefix.

1.1.2 Renderer Object

The renderer itself is a C++ object of type RendererAPI. The RendererAPI class provides only an interface; it
contains no data members nor non-virtual methods. Actual renderer implementations are assumed to be subclassed
from RendererAPI, and thus inherit the RendererAPI interface.

Renderer objects may be created by calling RendererAPI::CreateRenderer(), which returns a pointer to
a RendererAPI object. All subsequent communication to the renderer is through RendererAPI class methods
called through the pointer to the renderer. Deleting the renderer frees all resources associated with the renderer. For
example:

7

XRT Technical Reference, Release 1.0.3

RendererAPI *r = RendererAPI::CreateRenderer();
r->Camera ("main");
... API calls through r ...
r->Render ("main");
delete r; // Finished with this renderer

Multiple renderers may be created in succession or simultaneously, and API calls to different renderers may be freely
interleaved. API calls to one renderer do not have any semantic side effects upon other renderer objects, however
multiple simultaneous renderers may have performance-related side effects upon each other if they perform functions
that requires competition for system resources.

Renderers may come in different implementations, selected by an optional parameter to CreateRenderer. While
the default renderer is expected to produce images of high quality, alternate renderer implementations may provide
low-quality previews, or even perform tasks other than creating images (such as merely archiving the sequence of
API calls for later playback with Input). Optional arguments to CreateRenderer may also be used to supply a
user-defined error manager / error handler.

1.1.3 Hierarchical Graphics State

The renderer maintains a graphics state machine, which is a set of names and values, called attributes. Some of those
parameters (such as image resolution, camera projection, and output files) apply to the entire scene or to a particular
camera. Other parameters may be different for each geometric primitive. Per-object attributes include such things as
shader assignments and transformations.

The attribute state is hierarchical, in the sense that attributes (and, if you want, just the transformations) may be pushed
and popped using a stack.

A scene specification is mostly a series of declarations of geometric primitives, with calls to alter the attribute state
between primitives.

1.1.4 Copy-on-write

When geometric primitives (such as patches) are declared, they permanently take on the characteristics of the current
attribute state, including their object transformation. From that point onward, the primitive keeps a reference to that
attribute set, which is used as the primitive is processed. Further changes to attributes may affect yet-to-be-declared
primitives, but will not change the attributes of any primitives which have already entered the system. This is known as
copy-on-write semantics, because once a geometric primitive references an attribute state, attempts to change (write)
an attribute will copy the entire attribute state and change the copy, not the original set of attributes that is already
referenced by the primitive.

1.1.5 Data Type Declarations

The renderer already knows about many parameters that you might want to pass, such as the "fov" attribute to specify
field of view, or the parameter "P", which is used to pass 3D positions of geometric control vertices. These names
are all pre-declared, which means that the renderer recognizes the names, knows what type of data they represent, and
knows how to use the data.

In order to make the renderer extremely expandable, there are a number of ways that users can pass arbitrary data, for
example, to be later used by a user-supplied shader. The renderer won’t know what type of data you are passing in
these cases, but there are two ways that you can convey the type information: either by embedding the type declaration
in the attribute or parameter name, or by passing an explicit Type class. For example,

r->Parameter ("vertex point P", &Pvalues);

8 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

Here we pass a parameter "P", which has data type point and has interpolation type vertex. Alternately, we could
make the equivalent call that explicitly conveys the type using a Type structure:

r->Parameter ("P", Type(POINT,VERTEX), &Pvalues);

The definition of the Type class is:

class Type
{
public:

// Construct from base type and optional interp (assume non-array)
Type (BaseType basetype, Interpolation interp=CONSTANT);

// Construct with array length and optional interp
Type (BaseType basetype, int arraylen, Interpolation interp=CONSTANT);

// Construct from a string (e.g., "vertex float[3]"). If no valid
// type could be assembled, set basetype to UNKNOWN.
Type (const char *typestring);
...

};

Valid base types include FLOAT, INT, COLOR, POINT, VECTOR, NORMAL, MATRIX (16 floats forming a 4x4 matrix),
and HPOINT (4 floats forming a homogeneous point). Valid interpolation types include CONSTANT (the default, no
interpolation), PERPIECE, LINEAR, and VERTEX.

The Type class is defined in the header file type.h, which is automatically included by rendererapi.h. Type
is in namespace xrt.

1.1.6 Interpolation Type

A common task is to pass user data along with a geometric primitive, and have the renderer automatically interpolate
the data over the primitive and make it available to the user’s shaders. In addition to specifying the data type, as
above, you may also specify the interpolation type (sometimes called storage class). In addition to being able to
pass a single value for the entire primitive (as above, with no interpolation type specified), all primitives support the
interpolation types vertex, which requires the same number of values as the control vertex positions (“P” or “Pw”)
and is interpolated in the same manner as the positions; and linear, which is linearly (or bilinearly) interpolated
across the primitive, and therefore may have a different number of values than the control vertices. Some primitives
also support the interpolation type perpiece, which supplies one value for each section of the primitive (one per
face for a Mesh, one per curve for a Curves). It’s easy to see how interpolation type is combined with data type in
the following example:

int nverts[1] = {3}; // Number of vertices for each face
int verts[3] = {0, 1, 2}; // Vertex index sequence
float Pvals[3][3] = { /* points */ };
float Cvals[3][3] = { /* colors */ };
float temp = 98.6;

r->Parameter ("vertex point P", &Pvals);
r->Parameter ("vertex color C", &colvals);
r->Parameter ("float temperature", &temp);
r->Mesh ("linear", 1, nverts, verts);

1.1. Basic Concepts 9

XRT Technical Reference, Release 1.0.3

1.1.7 Parameter Lists

Many API routines take a variable number of parameters. Among these routines are all geometric primitive and shader
declarations. For example, the Mesh call above passes positions, colors, and user data named “temperature”. Below
is another illustration using a slightly different form of passing parameters, where the type is explicitly passed as a
Type rather than implicitly passed as part of the parameter name:

float Pvals[3][3] = { /* points */ };
float widthvals[3] = { /* widths */ };

r->Parameter ("P", Type(POINT,VERTEX), &Pvals);
r->Parameter ("width", Type(FLOAT,VERTEX), &widthvals);
r->Points (3);

Using types embedded in the parameter names is equivalent to passing an explicit Type. You are free to use whichever
is more convenient for your application. Humans tend to prefer to use the type/name strings, whereas various automatic
or machine-driven translations prefer passing a Type.

1.2 Parameters

RendererAPI::Parameter (const char *name, float value)
RendererAPI::Parameter (const char *name, int value)
RendererAPI::Parameter (const char *name, const char *value)
RendererAPI::Parameter (const char *name, const float *value)
RendererAPI::Parameter (const char *name, const int *value)
RendererAPI::Parameter (const char *name, const char **value)
RendererAPI::Parameter (const char *name, const void *value)

RendererAPI::Parameter (const char *name, Type type, float value)
RendererAPI::Parameter (const char *name, Type type, int value)
RendererAPI::Parameter (const char *name, Type type, const char *value)
RendererAPI::Parameter (const char *name, Type type, const float *value)
RendererAPI::Parameter (const char *name, Type type, const int *value)
RendererAPI::Parameter (const char *name, Type type, const char **value)
RendererAPI::Parameter (const char *name, Type type, const void *value)

Saves a single named parameter into the “pending parameter” list for subsequent use by Command,
Camera, Output, Shader, Light, or a geometric primitive. Any of these routines will use all of
the pending parameters, and will clear the pending list. Note that the Parameter routine does not
copy the data itself, so the user should be careful not to overwrite or free data until after the Command,
Camera, Output, Shader, Light, or a geometric primitive call has been made.

The value may be a float, int, or string (passed as a char *), or a pointer to an array of float,
int, or char * values. Data consisting of multiple float values (including color, point, vector,
normal, hpoint, or matrix data) should be passed using the float * version. The data type and
declaration must match - for example, “float fov” may be called by pasing a float or a float *,
but any of the other varieties of Parameter will produce a runtime error. It’s also possible to simply
pass a raw void * pointing to the data, but in that case there is no compile-time type safety.

Two flavors of Parameter exist: one passes an explicit type in the form of a Type object, while the
other deduces the type from the name itself (as described in Section Data Type Declarations).

EXAMPLES:

10 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

r->Parameter ("float Kd", 0.5);
r->Parameter ("Ks", Type(FLOAT), 0.25);
r->Shader ("surface", "plastic"); // Uses the Kd and Ks parameters

r->Parameter ("vertex point P", &P);
r->Parameter ("C", Type(COLOR,LINEAR), &C);
r->Patch ("linear", 4, 4); // Uses the P and C parameters

1.3 Renderers, Cameras, Outputs, and Rendering

static RendererAPI*
RendererAPI::CreateRenderer (const char *type=NULL, xrt::ErrorManager *err=NULL)

CreateRenderer creates a renderer of given type (if type is unspecified, a default type is assumed),
returning a pointer to a RendererAPI object to which subsequent API requests may be sent. The
renderer will be destroyed and its resources freed simply by deleting it.

XRT recognizes the following renderer types:

• No type, or an empty string for type, indicates the default renderer, which is a full high-quality
rendering of the scene.

RendererAPI::Camera (const char *name)

Creates a camera located at the local (CTM) origin, facing in the direction of the local +z, with local +x
pointing toward the right of the screen and the local +y pointing toward to top of the screen (note that this
makes the camera inherently “left-handed”).

There may be multiple Camera statements. All cameras that have corresponding Output statements
will render images, but cameras without Output statements will not produce images (unless no Output
statement is present at all in the scene, in which case the first camera declared will be automatically given
a default Output).

Any pending parameters (set by Parameter) give camera and image formation attributes (summarized
below and explained in detail in Section Camera Attributes). Camera copies the parameter values and
clears the pending parameter list (making it safe for the user to subsequently reuse or free the memory
referenced by the preceeding Parameter calls).

All cameras must have distinct names. If Camera is called with the name of an existing camera, the old
camera defintition will be replaced by the new camera definition.

EXAMPLE:

r->SetTransform (M);
r->Parameter ("float fov", 32.0f);
int res[2] = { 640, 480 };
r->Parameter ("int[2] resolution", &res);
r->Parameter ("float fov", fov);
r->Camera ("maincam");

1.3. Renderers, Cameras, Outputs, and Rendering 11

XRT Technical Reference, Release 1.0.3

Camera Attribute Meaning (default value)
"string projection" Projection ("perspective")
"float fov" Vertical field of view (90)
"float[4] screen" Portion of the projection plane to image (-xres/yres, xres/yres,

-1, 1)
"float near" Near clipping plane distance (0.1)
"float far" Far clipping plane distance (1e6)
"int[2] resolution" Image resolution (640, 480)
"float pixelaspect" Pixel aspect ratio (1)
"float[4] crop" Subimage to render (0, 1, 0, 1)
"float[2] shutter" Shutter open and close time for motion blur (0, 0)
"float fstop" f/stop for depth of field (default: no DOF)
"float focallength" Lens focal length (default: no DOF)
"float focaldistance" Distance to sharp focus (default: no DOF)
"int[2] spatialquality" Number of subpixel antialiasing regions (4, 4)
"int temporalquality" Number of time values for motion blur (16)
"int dofquality" Number of lens values for motion blur (16)
"int[2]
limits:bucketsize"

Size of pixel rectangles used as work units (32, 32)

"string bucketorder" Order of bucket traversal (“horizontal”)

RendererAPI::Output (const char *name, const char *format,
const char *data, const char *camera)

Specifies an output image for rendered pixels, for a particular camera.

The name parameter is a string that gives the name of an image file, or other destination. Multiple
simultaneous output images (presumably each with different data) may be specified simply by having
multiple Output statements with different names. There is no set limit to the number of output images.
If Output specifies an output name that already exists, the previous definition will be replaced by the
new definition of that output.

The format is a string that specifies the type of file format to write.

If format is NULL or points to the string "null", the output will never be used (thus, an output may be
effectively deleted by replacing it and using "null" for format).

The data parameter is a string that indicates what data to output, and may include any of the following:

• "rgb": output a 3-channel file containing color.

• "rgba": output a 4-channel file containing color and alpha (coverage/opacity).

• "z": create an image containing the z depth of the closest surface in each pixel.

Any pending parameters (set by Parameter) give output attributes (summarized below and explained
in detail in Section Output Attributes). Output copies the parameter values and clears the pending
parameter list (making it safe for the user to subsequently reuse or free the memory referenced by the
preceeding Parameter calls).

Parameters respected by Output include:

"string filter" The name of the pixel filter to use.
"float[2] filterwidth" The width (in x and y) of the pixel filter to use.
"float gain" The image gain (1 for none).
"float gamma" The gamma correction (1 for no correction).
"float dither" The dither amplitude (0 for no dither).
"int[4] quantize" The zero, one, min and max quantization levels.
other Additional data will be passed down to the image output format driver.

12 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

Please consult Section Output Attributes for detailed explanation of these parameters and their possible
values.

Any parameterlist tokens other than the ones above will be passed along to the image output format driver.
Check the documentation for the specific image driver to see what optional parameters it can take.

EXAMPLE:

r->Output ("beauty.tif", "tiff", "rgba", "maincam");
r->Output ("Beauty", "iv", "rgb", "maincam");

The above commands create two display output streams: (1) a TIFF file beauty.tif containing the
color and alpha of the image using default filtering and quantization, and (2) a live image viewer.

RendererAPI::World ()

Worldmarks the end of the section where scene-wide attributes, cameras, and outputs may be set, and the
beginning of the section where geometric primitives may be declared. It also resets the CTM to "world"
space.

If no Camera statement was ever encountered, a camera is added to the scene assuming that the current
CTM is the world position and the camera’s origin was the original CTM position (before any transfor-
mations were encountered).

RendererAPI::Render ()
RendererAPI::Render (const char *camera)

Render signals the end of the scene geometry, and triggers final rendering of all the output images. All
cameras that have corresponding Output calls will be rendered. Cameras that have no corresponding
Output will not produce images, unless no Output statement is present at all in the scene, in which
case the first camera declared will be automatically given a default Output. After a call to Render, the
graphics state (including CTM) is restored to the way it was immediately following the World call.

Default “live” renderers are blocking, that is, the Render call will not return to the caller until all render-
ing is completed.

RendererAPI::Command (const char *name)

Executes a command signified by the token name.

Any pending parameters (set by Parameter) give optional parameters specific to that particular com-
mand. Command copies the parameter values and clears the pending parameter list (making it safe for the
user to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

Note: This routine is currently a stub and is provided for backwards compatibility with the Gelato specification

RendererAPI::Comment (const char *format, ...)

For renderer implementations that are creating an archive file, insert a comment using the usual C/C++
printf formatting rules. The archiving renderer implementation, not the caller, is responsible for en-
suring that the comment is output with the right syntax to be perceived as a comment in the given format
(such as prepending “#” and outputting a linefeed at the end, if it is outputting Pyg).

Comment calls are ignored by “live” renderers that are creating images rather than command archive files.

EXAMPLES:

r->Comment ("this is a comment");

1.3. Renderers, Cameras, Outputs, and Rendering 13

XRT Technical Reference, Release 1.0.3

1.4 Attributes

Attributes are properties of the scene or of objects. Examples of scene attributes include image resolution and cam-
era projection. Examples of object attributes include color, object transformation (position/orientation), and shader
assignments.

As it receives scene file commands, the renderer keeps track of the current attribute state - that is, the full set of
attributes and their values. When a geometric primitive is declared, a copy of the current attribute state is bound, or
permanently attached, to that geometric primitive. Thus, setting attribute values can affect the appearance of
subsequently declared geometry, but does not change previously declared geometry. Because attributes may be
changed for each object, it is convenient to save the attribute state, modify attributes and declare geometric
primitives, then restore the attribute state to its prior condition.
RendererAPI::Attribute (const char *name, float value)
RendererAPI::Attribute (const char *name, int value)
RendererAPI::Attribute (const char *name, const char *value)
RendererAPI::Attribute (const char *name, const float *value)
RendererAPI::Attribute (const char *name, const int *value)
RendererAPI::Attribute (const char *name, const char **value)
RendererAPI::Attribute (const char *name, const void *value)

RendererAPI::Attribute (const char *name, Type type, float value)
RendererAPI::Attribute (const char *name, Type type, int value)
RendererAPI::Attribute (const char *name, Type type, const char *value)
RendererAPI::Attribute (const char *name, Type type, const float *value)
RendererAPI::Attribute (const char *name, Type type, const int *value)
RendererAPI::Attribute (const char *name, Type type, const char **value)
RendererAPI::Attribute (const char *name, Type type, const void *value)

The value may be a float, int, or string (passed as a char *), or a pointer to an array of float,
int, or char * values. Data consisting of multiple float values (including color, point, vector,
normal, hpoint, or matrix data) should be passed using the float * version. The data type and
declaration must match - for example, "float fov" may be called by pasing a float or a float
*, but any of the other varieties of Attribute will produce a runtime error. It’s also possible to simply
pass a raw void * pointing to the data, but in that case there is no compile-time type safety.

Two flavors of Parameter exist: one passes an explicit type in the form of a Type object, while the
other deduces the type from the name itself (as described in Section Data Type Declarations).

Certain attributes apply to the entire scene and cannot vary from object to object. Attempts to set these
attributes with Attribute after World will be ignored, and an error message will be printed. The
individual attributes’ descriptions will point out which ones cannot be set per-object.

EXAMPLES:

// Examples of types declared in the name
r->Attribute ("float fov", 45.0f); // Pass a float
r->Attribute ("string projection", "perspective"); // string
int res[2] = { 640, 480 };
r->Attribute ("int[2] resolution", res); // Pass int[2]
float temp = 98.6;
r->Attribute ("float user:temperature", &temp); // ptr to float

// Examples of passing an explicit type
r->Attribute ("fov", Type(FLOAT), 45.0f);
r->Attribute ("projection", Type(STRING), "perspective");

bool RendererAPI::GetAttribute (const char *name, float &value)

14 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

bool RendererAPI::GetAttribute (const char *name, int &value)
bool RendererAPI::GetAttribute (const char *name, char* &value)
bool RendererAPI::GetAttribute (const char *name, float *value)
bool RendererAPI::GetAttribute (const char *name, int *value)
bool RendererAPI::GetAttribute (const char *name, char **value)
bool RendererAPI::GetAttribute (const char *name, void *value)

Gets the value of a particular attribute (specified by name as a string) in the current attribute state. If
the attribute is found, its value is written into the memory pointed to by value, and GetAttribute
returns true. If the attribute name is not found or its type does not match the type declaration in name,
GetAttribute returns false and the data in value is not altered. It is up to the user to ensure that
value points to a big enough area for the data type requested.

EXAMPLE:

int resolution[2];
bool found = r->GetAttribute ("resolution", resolution);

RendererAPI::PushAttributes ()
RendererAPI::PopAttributes ()

Save and restore the per-object attribute state, including the current transformation (see
PushTransform and PopTransform, section Transformations). Upon PopAttributes,
the current attribute set is replaced by the attribute set that was in effect at the correspond-
ing PushAttributes. It is perfectly legal to nest blocks delimited by PushAttributes/
PopAttributes.

EXAMPLE:

r->PushAttributes()
r->PopAttributes()

RendererAPI::SaveAttributes (const char *name, const char *attrs = NULL)

Create a named alias for part or all of the current per-object attribute state in a global dic tionary of
name/attribute state pairs. The name may be used with RestoreAttributes.

The optional string attrs is a comma-separated list of which attributes should be saved (passing NULL
indicates that all attributes should be saved). Those attributes may be any of the named attributes described
throughout this section, and also recognize the following special names:

"transform" The current transformation
"shaders" All shader assignments, except for lights
"surface" Just the surface shader assignment
"displacement" Just the displacement shader assignment
"volume" Just the volume shader assignment
"lights" The active light list
"trimcurve" The trim curve for Patch primitives.
"user" All of the user: attributes

EXAMPLE:

r->SaveAttributes ("leftarm");
r->SaveAttributes ("creature_shaders", "shaders,C,opacity");

RendererAPI::RestoreAttributes (const char *name, const char *attrs = NULL)

Replaces some or all of the current per-object attribute state with the saved attribute state with the given
name (set by SaveAttributes).

1.4. Attributes 15

XRT Technical Reference, Release 1.0.3

The optional string attrs is a comma-separated list of which attributes, out of those saved by the cor-
responding SaveAttributes, should be restored (passing NULL indicates that all saved attributes
should be restored). The meanings of the attribute names are as described by the documentation for
SaveAttributes.

EXAMPLE:

r->RestoreAttributes ("leftarm", "C");
r->RestoreAttributes ("creature_shaders");

RendererAPI::PushOptions ()
RendererAPI::PopOptions ()

Save and restore the scene attribute state including:

• scene-wide attributes

• camera attributes (see section Camera Attributes)

• output attributes (see section Output Attributes)

• the active lights (see section Lights)

• the object definitions (section Object Instancing)

Upon PopOptions, the current scene state set is replaced by the scene state that was in effect at
the corresponding PushOptions. It is perfectly legal to nest blocks delimited by PushOptions/
PopOptions.

EXAMPLE:

r->PushOptions()
r->PopOptions()

RendererAPI::Modify (const char *namepattern=NULL)

Note: This routine is currently a stub and is provided for backwards compatibility with the Gelato specification

Scene-wide Attribute Meaning (default value)
"color
ray:background"

Color of rays that hit nothing (0, 0, 0)

"int ray:maxdepth" Maximum ray recursion depth (2)
"string path:input" Search path for scene files (".:$XRT_HOME/inputs")
"string path:texture" Search path for texture files (".:$XRT_HOME/textures")
"string path:shader" Search path for compiled shaders (".:$XRT_HOME/shaders")
"string
path:generator"

Search path for generator DSO’s (".:$XRT_HOME/plugins")

"string path:imageio" Search path for image format input/output DSO’s
(".:$XRT_HOME/plugins")

16 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

Per-Object Attribute Meaning (default value)
"color C" Default surface base color (1, 1, 1)
"color opacity" Default surface opacity (1, 1, 1)
"string orientation" Which way the normals face ("outside")
"int twosided" Is the object visible from both sides? (1)
"string name" Object name, used mainly for clear error reporting ("")
"string geometryset" Name of active geometry sets ("camera")
"matrix transform" CTM at shutter open time. (read only)
"string
trimcurve:sense"

Whether to discard the inside or outside of trim curves on Patch primitives
("inside")

"int light:nsamples" Number of area light samples (1)
"float shadow:bias" Default bias for ray and mapped shadows (0.01)
"int
ray:opaqueshadows"

Are ray-traced objects opaque regardless of their shaders (1)

1.5 Transformations

As it receives scene commands, the renderer keeps track of the current transformation (sometimes called the CTM for
“current transformation matrix”). When a geometric primitive is declared, a copy of the CTM is permanently attached
to that primitive, which will consider the CTM as its "object" space. Therefore, any spatial quantities (such as
vertex positions "P") passed on the primitive are relative the CTM that was in effect at the time that the geometric
primitive command was encountered. Thus, transformation commands affect the appearance of subsequently declared
geometry, but do not change previously declared geometry.

A number of named coordinate systems are predefined, or implicitly defined by API methods such as World and
Camera. The predefined coordinate systems are:

Name Meaning
"world" The coordinate system active at World.
"camera"The coordinate system with its origin at the center of the camera lens, x-axis pointing right, y-axis

pointing up, and z-axis pointing into the screen.
"screen"The coordinate system of the camera’s image plane (after perspective projection, if one is specified).

Coordinate (0,0) in the center of the screen.
"raster"2D pixel coordinates. The upper left corner of the image in "raster" space is (0,0), and the lower

right corner is (xres, yres).
"NDC" 2D Normalized Device Coordinates. The upper left corner of the image in "NDC" space is (0,0), and

the lower right corner is (1,1).

It is convenient to save the transformation state, modify the transformation and declare geometric primitives, then
restore the transformation to its prior condition. A command is provided to perform this action:
RendererAPI::PushTransform ()
RendererAPI::PopTransform ()

Save and restore the current transformation. Upon PopTransform, the current transformation is set to
the transformation that was in effect at the corresponding PushTransform.

It is perfectly legal to nest blocks delimited by PushTransform/ PopTransform.

Remember that the current transformation is actually part of the attribute state, therefore the CTM is also saved and
restored (along with the rest of the attribute state) by PushAttributes and PopAttributes.

A variety of commands are available to replace or modify the current transformation. The two most fundamental (and
upon which all others are based) are SetTransform and AppendTransform.
RendererAPI::SetTransform (const float *M)
RendererAPI::SetTransform (const char *name)

1.5. Transformations 17

XRT Technical Reference, Release 1.0.3

Replace the current transformation with the 4x4 matrix supplied. If the SetTransform routine is called
before World, then M is assumed to be relative to "camera" space, whereas a call to SetTransform
after World assumes that M is relative to "world" space.

If a string is passed rather than a matrix, replace the current transformation with the named transfor-
mation, which may either be the name of a saved attribute state defined by SaveAttributes (which
must, of course, have saved the transformation), or the name of a standard coordinate system ("world",
"camera", "screen", "raster", "NDC").

EXAMPLES:

Matrix4 M(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 0, 1);
r->SetTransform ((const float *)&M)

r->SetTransform ("world");

RendererAPI::AppendTransform (const float *M)

Concatenate the given 4x4 transformation matrix onto the current transformation.

EXAMPLE:

Matrix4 M(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 0, 1);
r->AppendTransform ((const float *)&M);

(This example assumes that the Matrix4 type consists of 16 contiguous float variables, and so can
be safely cast to a float *.)

The SetTransform and AppendTransform routines, which replace and concatenate the CTM, respectively, are
fully general. For several of the most useful and common transformations, there are specific routines that have a more
compact, simpler syntax: RendererAPI::Translate (float x, float y, float z)

Prepend the current transformation with the given translation. This is identical to the call:

Matrix4 M(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1);
r->AppendTransform ((float *)&M)

EXAMPLE:

r->Translate (2, 0, 0);

RendererAPI::Rotate (float angle, float x, float y, float z)

Prepend the current transformation with a rotation of angle degrees about the axis defined by (x, y, z).

EXAMPLE:

r->Rotate (30, 0, 0, 1);

RendererAPI::Scale (float sx, float sy, float sz)

Prepend the current transformation with a scale factor of (sx, sy, sz). This is identical to the call:

Matrix4 M(sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, sz, 0, 0, 0, 0, 1);
r->AppendTransform ((float *)&M)

EXAMPLE:

r->Scale (1, 2, 1);

RendererAPI::LookAt (float posx, float posy, float posz,
float atx, float aty, float atz, float upx, float upy, float upz)

18 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

Concatenates a viewing transformation matrix onto the current transformation, given a camera position,
target, and “up” vector.

The LookAt routine is designed to easily position and orient a camera. It is an error to use this routine
without a corresponding Camera call. Without a Camera call, XRT will assume that the LookAt call
actually defines the world position. See Section Renderers, Cameras, Outputs, and Rendering for more
explanations.

This routine is identical to the sequence:

Point pos = Point (posx, posy, posz)
Point target = Point (atx, aty, atz)
Vector dir = normalize (target - pos);
Vector up = Vector (upx, upy, upz);
up = normalize (up);
Vector right = cross (up, dir);
up = cross(dir, right);
float M[4][4];
M[0][0] = right[0]; M[0][1] = right[1]; M[0][2] = right[2]; M[0][3] = 0;
M[1][0] = up[0]; M[1][1] = up[1]; M[1][2] = up[2]; M[1][3] = 0;
M[2][0] = dir[0]; M[1][2] = dir[1]; M[2][2] = dir[2]; M[2][3] = 0;
M[3][0] = posx; M[3][1] = posy; M[2][3] = posz; M[3][3] = 1;
r->AppendTransform ((float*)M);

EXAMPLE:

r->Lookat (0, 0, 0, 1, 0, -2, 0, 1, 0);
r->Camera ("main");

1.6 Shaders and Lights

RendererAPI::Shader (const char *shaderusage, const char *shadername,
const char *layername=NULL)
RendererAPI::Shader (const char *shaderusage)

Sets the shader specified by shadername to be used as the current shader of the given shaderusage. Valid
tokens for shaderusage include "surface", "displacement", or "volume", and must match the
shader type that was declared in the shader source code.

If only the shaderusage is given (with no shader name), that shader usage will be cleared (i.e., no shader
will be assigned for that usage).

The optional layername, if specified, gives a name to the shader layer (for later use with
ConnectShaders). See ShaderGroupBegin for information on how to specify more than one
shader of each type.

Any pending parameters (set by Parameter) give parameters specific to the particular shader being
used. Shader copies the parameter values and clears the pending parameter list (making it safe for the
user to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Parameter ("float Kd", Kd);
r->Shader ("surface", "plastic");

RendererAPI::ShaderGroupBegin ()
RendererAPI::ShaderGroupEnd ()
RendererAPI::ConnectShaders (const char *srclayer, const char *srcparam,

1.6. Shaders and Lights 19

XRT Technical Reference, Release 1.0.3

const char *dstlayer, const char *dstparam)

ShaderGroupBegin and ShaderGroupEnd denote that repeated calls to Shader within the block
should create a group of shaders of the same type which will be executed in sequence on subsequent
geometry. This lets you, for example, bind several "surface" shaders at once. Any layer names passed
to Shader are valid only within the enclosing ShaderGroup block (and thus, calls to ConnectShaders
must be inside the same ShaderGroup block).

ConnectShaders connects two shaders such that the source shader’s parameter named by srcparam
will be used as input for the destination shader’s dstparam (overriding any shader defaults or other bind-
ings for that parameter). srclayer and dstlayer both refer to shaders on the object, referenced by the layer
names passed to calls to Shader. The srcparam either be the name of a parameter of srclayer (presum-
ably, but not required to be, an output parameter) or the name of a global variable (such as P, N, C, etc.),
and dstparam must be either the name of a parameter to dstlayer or the name of a global variable.

The source and destination parameters are presumed to be of the same data type, and if they are arrays,
they must have the same array length. Type conversions are fairly flexible for non-arrays, though; in
particular, any triple (color point, normal, vector) may connect to another triple, a float may connect to a
triple (replicating the value for all three components), and a triple may connect to a float (passing just the
first component). Failure of the names to be found or of the parameter data types to be compatible will
result in an error message, and no connection being made.

It is possible to connect a single channel of a triple to a scalar type, or a scalar to one channel of a triple, or
one channel of a triple to a channel of a triple. It is also possible to connect an individual array element to
a scalar type, or a scalar to an array element, or an array element to another array element (in which case
the two arrays need not be the same size). The element data types must still be compatible with each other,
but like scalars, triple-to-triple, float-to-triple and triple-to-float conversions are done automatically).

These routines may be used to create a layered light source, but in that case it would be Light calls
inside the ShaderGroupBegin / ShaderGroupEnd block, and all of the Light calls are expected
to have the same lightid. (See the description of Light, below, for details.)

EXAMPLE:

r->ShaderGroupBegin ();
r->Parameter ("string texturename", txname);
r->Shader ("surface", "texmap", "layer1");
r->Parameter ("float Kd", Kd);
r->Shader ("surface", "plastic", "layer2");
r->ConnectShaders ("layer1", "out", "layer2", "Ks");
r->ShaderGroupEnd ();

Example of automatic type conversion:

r->ConnectShaders ("layer1", "floatvar", "layer2", "colorvar");

Examples of array element and color channel connections:

r->ConnectShaders ("layer1", "floatarrayvar[3]", "layer2", "floatvar");
r->ConnectShaders ("layer1", "colorvar", "layer2", "colorarrayvar[1]");
r->ConnectShaders ("layer1", "floatvar", "layer2", "colorvar[1]");
r->ConnectShaders ("layer1", "colorvar[1]", "layer2", "floatvar");

RendererAPI::Light (const char *lightid, const char *shadername,
const char *layername=NULL)

Makes a new light source or replaces an existing light source. The light source is also added to the list of
active light sources in the attribute state (that is, it will illuminate subsequent geometry). The light source
(or layer) will use the light shader specified by shadername, and its "shader" space will be the CTM at
the time of the Light call.

20 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

lightid parameter is a unique identifier for the light. If lightid is the same as that of an existing light, the
old definition of that light will be replaced by the new definition of the light. If shadername is NULL or
points to the string "null", the light will never be used, effectively removing it from the scene.

When within a ShaderGroupBegin / ShaderGroupEnd block, Light will append a layer to the
light being specified. All layers of the light must use the same lightid. The optional layername, if speci-
fied, gives a name to the layer for later use with ConnectShaders.

Any pending parameters (set by Parameter) give parameters specific to the particular shader being
used. Light copies the parameter values and clears the pending parameter list (making it safe for the
user to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

If a geometry set is passed to the light via Parameter as the variable "string geometry", the set
of geometric primitives defines an area light source.

EXAMPLES:

float lightcolor[3] = { .9, 1, .7 };
r->Parameter ("color lightcolor", lc);
r->Light ("fill1", "pointlight");

r->Parameter ("float intensity", 10.0f);
r->Parameter ("string geometry", "myareageom");
r->Light ("key", "uberlight");

RendererAPI::LightSwitch (const char *lightid, bool onoff)

Add or remove a light from the active light list. The lightid is the identifier passed to a previous call to
Light. If onoff is false, the light is removed from the active light list, and therefore does not shine
on subsequently declared geometry. If onoff is true, the light is added to the active light list (if it not
already active), and therefore will shine on subsequently declared geometry.

EXAMPLE:

r->Light ("key", "spotlight");
...
r->LightSwitch ("key", false);
r->Patch (...); // key light will not shine on this patch

1.7 Motion Blur

Geometry and transformations may be motion-blurred over the course of a rendered frame to simulate how a real
camera captures light over a finite interval rather than instantaneously. The shutter interval of the camera (i.e., the time
range over which light exposes the image) is specified to the Camera call (see Section Renderers, Cameras, Outputs,
and Rendering) as the optional "float[2] shutter" parameter.

Both geometric primitives and transformations may be blurred (i.e., described in a changing way over time) using the
Motion method described below. The camera shutter interval need not be identical to the times given to Motion
calls, and multiple Motion calls that apply to the same object need not have identical time values.

Motion blur will only take effect if a camera shutter interval is specified. If the camera is not given a "shutter"
parameter, all objects will be drawn in their configuration at the earliest time of their motion descriptions.
RendererAPI::Motion (int ntimes, float time0, ...)
RendererAPI::Motion (int ntimes, const float *times)

Motion marks the start of a motion block and specifies (either with a variable parameter list or an array)
ntimes time values. It is expected that the Motion call is immediately followed by

1.7. Motion Blur 21

XRT Technical Reference, Release 1.0.3

1. exactly ntimes transformation calls (e.g., Translate, AppendTransform, etc.) of the same
name but with different numerical parameters; or

2. ntimes geometric primitives (including Parameter calls, if necessary) that differ in the values of
their parameters.

Each of the ntimes transformations or primitives corresponds to the position or shape at the respective
time passed to the Motion call.

Motion-blurred transformations will be linearly interpolated over each motion segment. At times before
the first motion time, the transformation will be identical to that of the first motion time; at times after the
last motion time, the transformation will be identical to that of the last motion time. That is, transforma-
tions simply do not move outside their specified time intervals.

Motion-blurred geometric primitives also linearly interpolate their control vertices or parameters over
each motion segment. Primitives do not exist outside the range of their motion segments. Thus, objects
whose motion descriptions only partially overlap the camera’s shutter interval may indeed only be imaged
for part of the shutter interval.

For motion-blurred geometric primitives, all ntimes primitives must be the same primitive type and the
same “shape.” That is, a primitive may not “morph” between two types (say, from a Mesh into a Patch),
nor may it change the list of parameters or their sizes (e.g., the primitive must have the same number of
control vertices at each time). Only the numerical values of the parameters may change over time.

Note: deformation blur is not yet implemented

EXAMPLE:

r->Motion (2, 0.0, 1.0/48.0);
r->Translate (0, 0, 0);
r->Translate (0, 0, 1);

The above example makes a single translation, but with two time values, so that the transformation translates one unit
in z over the time interval between t = 0 and t = 1/48.

1.8 Geometric Primitives

The renderer supports 0-, 1-, and 2D geometric primitives. The 0D primitives are points, useful for particle systems.
The 1D primitives are line or curve segments, useful for hair. The 2D primitives are broken down into patches, meshes
and quadrics.

Primitives inherit current attributes

Geometric primitives, when declared, inherit the current attribute state (including transformations and shader assign-
ments). Therefore, all spatial (point, normal, vector, matrix) data passed to the primitive, including control vertices,
are expressed in the object coordinate system, and will be transformed to a common space by the renderer. Subsequent
changes to attributes do not affect previously-declared primitives.

Control vertices and primitive variables

With the exception of quadrics, all other primitives have their shapes specified by a series of control vertices. The
actual shape of the object is defined by some kind of interpolation of the control vertices. Control vertices are passed
via Parameter as the variable "vertex point P". Some primitives allow rational (4-D homogeneous) points,
which are passed as the variable vertex hpoint Pw". All primitives defined by control vertices must have either
"P" or "Pw" (but not both).

A primitive may have use Parameter to override the default surface color or surface normal by attaching the vari-
ables "color C" or "normal N", respectively. If no "C" is attached, the default surface color will be the value
of the "C" Attribute (see Section Surface Appearance Attributes). It is probably not useful to override the default

22 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

normal "N" for truly curved-surface primitives (such as Patch or Mesh("catmull-clark") but is frequently
used when using faceted geometry such as Mesh("linear") to provide smoothed normals. .

Other primitive variables may be attached to geometric primitives via Parameter. These are automatically interpo-
lated, according to the interpolation type, and passed along to become the values of any identically-named parameters
of any of the surface, displacement, or volume shaders attached to the primitive.

Primitive variables have several choices of interpolation type. All primitives support interpolation type vertex,
which requires the same number of values as the control vertex positions ("P" or "Pw") and is interpolated in the same
manner as the positions; and linear, which is linearly (or bilinearly) interpolated across the primitive, and therefore
may have a different number of values than the control vertices. Some primitives also support the interpolation type
perpiece, which supplies one value for each section of the primitive (one per face for a Mesh, one per curve for a
Curves).

1.8.1 Patches

RendererAPI::Patch (const char *interp, int nu, int nv)

Specifies a rectangular array of nu * nv control vertices forming a mesh that is piecewise linear or
cubic. In this simple form, the mesh is parameterized uniformly on [0,1] using the specified interpolation
type: "linear" for piecewise linear, or one of several piecewise cubic types, including "bezier",
"bspline", and "catmull-rom".

It is important for nu and nv to be appropriate for the interpolation type (e.g., >= 2 for linear, >= 4 for
cubic, 4 + 3 i for Bezier).

Pending parameters (set by Parameter) give control vertices and primitive variables to be interpolated
across the surface. The parameters must include either 3D control vertices (passed as the "P" parameter),
or 4D hpoint control vertices ("Pw") to indicate a rational patch.

Primitive variables with interpolation type vertex require nu * nv values (i.e., the same number of values
as "P" or "Pw"; linear primitive variables require 4 values, which are interpolated bilinearly across
the patch; and primitive variables without an interpolation type require a single data value which does not
vary across the patch.

Patch copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

float P[] = { 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0,
-1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, 0, 1, 0, -3,
1, 1, -3, 0, 1, -3,-1, 1, -3, -1, 0, -3, -1, -1, -3,
0, -1, -3,1, -1, -3,1, 0, -3 };

r->Parameter ("P", Type(POINT,VERTEX), P);
r->Patch ("bspline,linear", 9, 2);

RendererAPI::Patch (int nu, int uorder, const float *uknot, float umin,
float umax, int nv, int vorder, const float *vknot, float vmin, float vmax)

Specify a rectangular array of nu * nv control vertices forming a NURBS mesh. In this more complex
form, the user may explicitly specify u and v orders, knot vectors, and parameter subranges. The length
of uknot must be nu + uorder and the length of vknot must be nv + vorder. The surface is defined over the
parametric range [umin... umax, vmin... vmax].

Pending parameters (set by Parameter) give control vertices and primitive variables to be interpolated
across the surface. The parameters must include either 3D control vertices (passed as the "P" parameter),

1.8. Geometric Primitives 23

XRT Technical Reference, Release 1.0.3

or 4D hpoint control vertices ("Pw") to indicate a rational patch.

Primitive variables with interpolation type vertex require nu * nv values; linear primitive variables
require 4 values, which are interpolated bilinearly across the patch; and primitive variables without an
interpolation type require a single data value which does not vary across the patch.

Patch copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

float uknot[] = { 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4 };
float vknot[] = { 0, 0, 1, 1 };
float Pw[] = { 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, -1, 1, 0, 1,

-1, 0, 0, 1, -1, -1, 0, 1, 0, -2, 0, 2, 1, -1, 0, 1,
1, 0, 0, 1, 1, 0, -3, 1, 1, 1, -3, 1, 0, 2, -6, 2,
-1, 1, -3, 1,-1, 0, -3, 1,-1, -1, -3, 1, 0, -2, -6, 2,
1, -1, -3, 1, 1, 0, -3, 1 };

r->Parameter ("vertex hpoint Pw", Pw);
r->Patch (9, 3, uknot, 0, 4, 2, 2, vknot, 0, 1);

RendererAPI::TrimCurve (int nloops, const int *ncurves, const int *n,
const int *order, const float *knot, const float *min, const float *max,
const float *uvw)

Trim curves define regions in a Patch‘s parametric space that will be removed (or will be kept, with the
remainder removed, depending on the setting of the "trimcurve:sense" attribute; see Section Trim
Curve Control).

Sets the current trim curve that will apply to subsequently defined Patch primitives. This API call
actually sets an attribute, and thus the trim curve is saved and restored with the PushAttributes,
PopAttributes, SaveAttributes, and RestoreAttributes routines. Trimming will be
turned off for subsequent geometry if nloops is zero (in which case the values of the other arguments
are unused).

Trim curves define regions in a Patch‘s parametric space that will be removed. The region is defined
by nloops closed loops, each of which consists of ncurves[i] 2D nonuniform rational curve segments (i.e.
NURBS curves). Thus, the total number of trim curve segments is the sum of all elements in ncurves. In
respective order of the loops and curve segments, n[j] is the number of rational control points, order[j] is
the order of the curve segment, min[j] and max[j] are the minimum and maximum parametric values of the
curve segment. The knots array contains the knot vectors for all the curve segments (with each segment j
having n[j] + order[j] knot values). The uvw array contains the control points (with each segment j having
n[j] control points). The control points themselves each consist of three floating-point numbers giving a
rational (u,v,w) 2D position in parametric space of the patch.

The symmetry between the specification of trim curves as NURBS curves and the specification of Patch
primitives as NURBS surfaces should be apparent.

EXAMPLE:

int ncurves[] = { 1 };
int n[] = { 9};
int order[] = { 3 };
float uknot[] = { 0, 0, 0, .25, .25, .5, .5, .75, .75, 1, 1, 1 };
float min[] = { 0 };
float max[] = { 1 };
float uvw[] = { 1, .5, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1,

0, .5, 1, 0, 0, 1, 1, 0, 2, 1, 0, 1, 1, .5, 1 };

r->TrimCurve (1, ncurves, n, order, knots, min, max, uvw);

24 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

1.8.2 Meshes

RendererAPI::Mesh (const char *interp, int nfaces, const int *nverts,
const int *verts)

Specifies a connected mesh of faces. A mesh is not constrained to have rectangular connectivity - each
face may have any number of vertices (3 or more) and any number of faces may share a vertex.

The interp parameter may be "linear" to indicate a linear interpolation (i.e., a flat polygon mesh), or
"catmull-clark" to indicate Catmull-Clark subdivision should be used to smooth the mesh. Other
interpolation schemes may be added in the future.

Note: subdivision surfaces are not supported

The nfaces parameter is the number of faces in the mesh. The array nverts [0.. nfaces -1] contains the number of
vertices in each face. The array verts, whose length is the sum of all the entries in nverts [], contains the vertex indices,
in order, of all faces.

Pending parameters (set by Parameter) give control vertices, primitive variables to be interpolated across the
surface, or other parameters that control mesh behavior. The parameters must include 3D control vertices (passed as
the "P" parameter); other parameters are optional.

Any vertex primitive variable must have a number of entries high enough to accommodate the highest vertex index
in verts []. All linear primitive variables must have the same number of data items as the length of the verts array,
and are in the same order as the vertex indices themselves. Mesh allows perpiece variables, which have a number
of data items equal to nfaces, one per face. As usual, primitive variables without an interpolation type supply only one
value for the entire mesh.

Several special parameters control behavior and shape of the mesh, rather than merely providing user data that will be
interpolated:

"perpiece string __attributes"

Indicates the attribute states (previously named with SaveAttributes) to apply to each
face. This allows the specification of a single mesh that has different attributes on a per-face
basis, such as having multiple sets of faces each of which has a different surface shader. If
this optional parameter is not specified, all faces will inherit the default attribute state of the
primitive (that is, the attributes locally active at the time of the Mesh statement).

"string[N] __attributes"
"perpiece int __attributesindex"

The functionality of these two parameters is identical to that of "perpiece string
__attributes", but allows an alternate specification: an array of attribute names, and a
per-face integer index into that array. This may be a more convenient or more compact repre-
sentation for some applications. It is an error for any face to specify an index that is greater
than or equal to the length of the __attributes array.

These special primitive variables control the behavior of the mesh, and are not passed down to the shader
parameters as are ordinary user-defined primitive variables.

Mesh copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

int nverts[] = { 4, 4, 4, 4, 4, 4, 4, 4, 4};
int verts[] = { 0, 1, 5, 4, 1, 2, 6, 5, 2, 3, 7, 6,

4, 5, 9, 8, 5, 6, 10, 9, 6, 7, 11, 10,
8, 9, 13, 12, 9, 10, 14, 13, 10, 11, 15, 14 };

float points[] = { -3, 0, -3, -1, 0, -3, 1, 0, -3, 3, 0, -3,

1.8. Geometric Primitives 25

XRT Technical Reference, Release 1.0.3

-3, 0, -1, -1, 0, -1, 1, 0, -1, 3, 0, -1,
-3, 0, 1, -1, 0, 1, 1, 0, 1, 3, 0, 1,
-3, 0, 3, -1, 0, 3, 1, 0, 3, 3, 0, 3 };

r->Parameter ("vertex point P", (float *)&points);
r->Mesh ("catmull-clark", 9, nverts, verts);

1.8.3 Point and Curve Primitives

RendererAPI::Points (int npoints)

Points primitives are for particle systems. npoints is the number of distinct point particles.

Pending parameters (set by Parameter) give control vertices and primitive variables to be interpolated
across the primitive. The parameters must include 3D positions of the points (passed as the "P" parame-
ter).

Primitive variables with interpolation type vertex require npoints values; primitive variables without an
interpolation type require a single data value which does not vary from point to point.

If the primitive variable list contains a floating-point variable named "width", the values will be used to
determine the diameter of the point primitives. The width is measured in object space units, and defaults
to 1.0 if no value is supplied. The "width" parameter may either be vertex, specifying the width of
each point individually, or no interpolation type to specify a single width for all points in the primitive.

Points copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

RendererAPI *r;

float positions[4][3] = { ... }
float widths[4] = { .01, .02, .01, .04 };
r->Parameter ("P", positions);
r->Parameter ("vertex float width", widths);
r->Points (4);

RendererAPI::Curves (const char *interp, int ncurves, int vertspercurve)
RendererAPI::Curves (int ncurves, int vertspercurve, int order,
const float *knot, float vmin, float vmax)

Curves primitives look like thin tubes or ribbons and are very inexpensive to render, making them ideal
for hair, fur, grass, struts seen from far away, etc.

This primitive draws ncurves individual curves, each of which is formed by vertspercurve vertices.

In the first, simpler form, the curves are piecewise linear or piecewise cubic, and are parameterized uni-
formly on [0,1]. The interp parameter describes the means of interpolating vertex variables, including
"P", along each individual curve. An interp value of "linear" indicates piecewise linear curves,
whereas "bezier", "bspline", or "catmull-rom" indicate a piecewise-cubic interpolation of
the specified basis. The vertspercurve must be an appropriate number for the particular interpolation type
(i.e., >= 2 for linear, >= 4 for cubic, and 4 + 3 i for Bezier).

The second form allows complete specification of arbitrary order and knot vector, much like Patch. The
length of knot must be vertspercurve + order. Each individual curvelet follows a NURBS curve defined
over the parametric range [vmin ... vmax].

Note: NURBS Curves are not implemented

26 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

Pending parameters (set by Parameter) give control vertices and primitive variables to be interpolated across the
curves. The parameters must include either 3D control vertices (passed as the "P" parameter), or 4D hpoint control
vertices ("Pw") to indicate rational curves.

The number of values required for any vertex primitive variable is ncurves * vertspercurve. Primitive
variables with interpolation type linear require 2 * ncurves values, one for each curve endpoint, and will be
linearly interpolated along the length of each curve. perpiece primitive variables require ncurves values, one for
each curve, and will be constant along each individual curve. Primitive variables without interpolation types, as usual,
require a single value that will be used for all the curves in the primitive.

Curves copies the parameter values and clears the pending parameter list (making it safe for the user to subsequently
reuse or free the memory referenced by the preceeding Parameter calls).

An optional floating-point "width" parameter specifies the diameter of each curve in object space, and may be
perpiece (one width value for each individual curve), linear (two width values for each individual curve, varying
linearly along the length of the curve), vertex (same number of values and interpolation method as the vertex
positions), or without an interpolation type (if all individual curves have the same diameter). If no "width" parameter
is supplied, the diameter of all curves will be 1.0.

The individual curves, though actually shaped like ribbons, always face toward the viewing position (camera or ray) so
that they subtend the full width, thus looking as if they were a thin tube rather than a ribbon. However, if you supply a
linear or vertex "N" parameter, the curves will appear as ribbons whose orientation is fixed to be perpendicular
to the normals supplied. Keep in mind that the primitive is designed for very thin (possibly subpixel) tubes or ribbons.
Curves with exceptionally large widths may no longer look as good, due to the kinds of approximations used to render
large numbers of them efficiently.

EXAMPLE:

// Make two 4-point Bezier curve segments that taper from a width
// of 0.1 at the base to 0.05 at the tip.
float positions[8][3] = { ... }
float widths[4] = { .1, 0.05, 0.1, 0.05 };
r->Parameter ("vertex point P", &positions);
r->Parameter ("linear float width", &widths);
r->Curves ("bezier", 2, 4);

1.8.4 Quadrics

Six quadrics, plus the torus, are supported as geometric primitives. The quadrics all share several important proper-
ties. Most notably, unlike all of the previously-described primitives, quadrics are not described by a mesh of control
vertices, and therefore do not require "P" values to be supplied. Rather, each quadric is defined parametrically, using
trigonometric equations that sweep it out as a function of two parameters.

The quadrics are all created by sweeping a curve around the z-axis in its local coordinate system, so z is always “up.”
The sweep angle, thetamax, is given in degrees (360 being a closed, fully-swept shape). A thetamax < 0 creates a
quadric that is inside-out. The quadrics all have simple controls for sweeping a partial quadric, using ranges of z or
the parametric angles. Quadrics are defined relative to their "object" space coordinate systems, and are placed by
using a transformation, since they have no built-in translation or rotational controls.

Pending parameters (set by Parameter) give primitive variables to be interpolated across the primitive. Primitive
variables with interpolation type linear require four values; primitive variables without an interpolation type require
a single data value which does not vary across the patch.

The quadrics are the only geometric primitive that are specified without control vertices ("P" or "Pw"). Because of
this, vertex primitive variables are not accepted.
RendererAPI::Cone (float height, float radius, float thetamax)

Creates a cone with an open base on the x-y plane and apex at (0, 0, height).

1.8. Geometric Primitives 27

XRT Technical Reference, Release 1.0.3

Cone copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Cone (3.0, 1.0, 360.0)

RendererAPI::Cylinder (float radius, float zmin, float zmax, float thetamax)

Creates a cylinder with the given radius. The cylinder is parallel to (and centered upon) the z-axis and
extends from z = zmin to z = zmax.

Cylinder copies the parameter values and clears the pending parameter list (making it safe for the user
to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Cylinder (1.0, -0.5, 1.2, 360.0)

RendererAPI::Disk (float height, float radius, float thetamax)

Creates a disk parallel to the x-y plane with z = height.

Disk copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Disk(0.0, 2.0, 360.0)

RendererAPI::Hyperboloid (float x1, float y1, float z1, float x2, float y2, float z2, float thetamax)

Create a hyperboloid by sweeping the line segment joining points (x1, y1, z1) and (x2, y2, z2) about the
z-axis with the given sweep angle thetamax.

The hyperboloid is actually quite a flexible superset of some of the other primitives. For example, if these
points have the same x- and y-coordinates, and differ only in z, this will create a cylinder. If the points
both have the same z coordinate, it will make a planar ring (a disk with a hole cut out of the center). If the
points are placed so that they have the same angle with the x-axis (in other words, are on the same radial
line if looked at from the top), they will create a truncated cone. In truth, some of these special cases are
more useful for geometric modeling than the general case that creates the “familiar” hyperboloid shape.

Hyperboloid copies the parameter values and clears the pending parameter list (making it safe for the
user to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Hyperboloid(1.0, 0.0, 0.0, 0.0, 0.5, 2.0, 360)

RendererAPI::Paraboloid (float topradius, float zmin, float zmax, float thetamax)

Creates a partial paraboloid swept around the z-axis. The paraboloid is defined as having its minimum at
the origin and has radius topradius at height zmax, and only the portions above zmin are drawn.

Paraboloid copies the parameter values and clears the pending parameter list (making it safe for the
user to subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Paraboloid(3.0, 0.0, 6.0, 360.0)

RendererAPI::Sphere (float radius, float zmin, float zmax, float thetamax)

Creates a sphere with the given radius, centered at the origin of the local coordinate space. The zmin and
zmax parameters can cut off the top and bottom of the sphere if they are not equal to +- radius.

28 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

If thetamax < 0 or zmax < zmin, the sphere is turned “inside-out” in the expected way.

Sphere copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Sphere (1.0, -1.0, 1.0, 360.0);

RendererAPI::Torus (float majorradius, float minorradius, float phimin, float phimax, float thetamax)

Creates a quartic “donut” surface (technically not a quadric). The cross section of a torus is a circle of
radius minorradius on the x-z plane, and the angles phimin and phimax define the arc of that circle. It
will be swept around z at a distance of majorradius to create the torus. Thus, majorradius + minorradius
defines the outside radius of the entire torus (its maximum size), while majorradius - minorradius defines
the radius of the hole.

Torus copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Torus(3.0, 0.5, 0.0, 360.0, 360.0)

1.8.5 Custom Geometric Primitives

RendererAPI::Shape (const char* name)

Causes the renderer to create a geometric primitive using a Shape DSO/DLL. name is presumed to be the
name of a shared library (DSO or DLL) in the “plugin” path (see Section 4.3.6).

Shape copies the parameter values and clears the pending parameter list (making it safe for the user to
subsequently reuse or free the memory referenced by the preceeding Parameter calls).

EXAMPLE:

r->Parameter ("float radius", 1.0);
r->Shape ("sphere");

1.9 Constructive Solid Geometry

All of the previously described geometric primitives can be used to define a solid by bracketing a collection of surfaces
with SolidBegin and SolidEnd. This is often referred to as the boundary representation of a solid.

When specifying a volume it is important that boundary surfaces completely enclose the interior. Normally it will
take several surfaces to completely enclose a volume since, except for the sphere, the torus, and potentially a periodic
patch or patch mesh, none of the geometric primitives used by the rendering interface completely enclose a volume.
A set of surfaces that are closed and non-self-intersecting unambiguously defines a volume. However, XRT performs
no explicitchecking to ensure that these conditions are met.

The inside of the volume is the region or set of regions that have finite volume; the region with infinite vol-
ume is considered outside the solid. For consistency the normals of a solid must always point outwards.
RendererAPI::SolidBegin (const char* operation)

Starts the definition of a solid. operation may be one of the following tokens: "primitive",
"intersection", "union", "difference".

1.9. Constructive Solid Geometry 29

XRT Technical Reference, Release 1.0.3

Intersection and union operations form the set intersection and union of the specified solids. Differ-
ence operations require at least 2 parameter solids and subtract the last n-1 solids from the first(where
n is the number of parameter solids). When the innermost solid block is a “primitive” block, no other
SolidBegin calls are legal. When the innermost solid block uses any other operation, no geometric
primitives are legal.

RendererAPI::SolidEnd ()

Terminates the definition of the solid.

A single solid sphere can be created using

r->SolidBegin("primitive");
r->Sphere(1.0, -1.0, 1.0, 360.0);
r->SolidEnd();

Note that if the same sphere is defined outside of a SolidBegin - SolidEnd block, it is not treated as a volume-
containing solid.

A solid hemisphere can be created with

r->SolidBegin("primitive");
r->Sphere(1.0, 0.0, 1.0, 360.0);
r->Disk(0.0, 1.0, -360.0);
r->SolidEnd();

(Note that the -360 causes the surface normal of the disk to point towards negative z.)

A composite solid is one formed using spatial set operations. The allowed set operations are "intersection",
"union", and "difference". A spatial set operation has n operands, each of which is either a primitive solid
defined using SolidBegin("primitive") - SolidEnd, or a composite solid that is the result of another set
operation. For example, a closed cylinder would be subtracted from a sphere as follows:

r->SolidBegin("difference");

r->SolidBegin("primitive");
r->Sphere(1.0, -1.0, 1.0, 360.0);
r->SolidEnd();

r->SolidBegin("primitive");
r->Disk(2.0, 0.5, 360.0);
r->Cylinder(0.5, -2.0, 2.0, 360.0);
r->Disk(-2.0, 0.5, -360.0);
r->SolidEnd();

r->SolidEnd();

When performing a difference the sense of the orientation of the surfaces being subtracted is automatically reversed.

Attributes may be changed freely inside solids. Each section of a solid’s surface can have a different surface shader
and color.

1.10 Object Instancing

A list of geometric primitives may be retained by enclosing them with ObjectBegin and ObjectEnd.

Transformations, and even Motion blocks, may be used inside an Object block, though they obviously imply a
relative transformation to the coordinate system active when the Object is instanced. All of an object’s attributes are

30 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

inherited at the time it is instanced, not at the time at which it is created, unless they have been already set within the
Object block.
RendererAPI::ObjectBegin (const char *name)

Starts the definition of a named object. The name is used to reference the definition. If name has been
used to define a previous object, that object is replaced by the new definition.

RendererAPI::ObjectEnd ()

Ends the definition of the current object.

RendererAPI::ObjectInstance (const char *name)

Creates an instance of a previously named object. The object inherits the current set of attributes defined
in the graphics state.

EXAMPLE:

r->ObjectBegin("teapot");
...
r->ObjectEnd();
...
r->ObjectInstance("teapot");

1.11 Procedural Geometry Generators and Scene Files

RendererAPI::Input (RendererAPI::Generator *procedure, const float *boundingbox=NULL)

Submits to the renderer an already-created object, derived from the RendererAPI::Generator
class:

class Generator
{
public:

Generator () { }
virtual void ~Generator () = 0;
virtual bool bound (float *bbox) { return false; }
virtual void run (RendererAPI *rend, const char *params) = 0;

};

If boundingbox is NULL, the procedure’s bound() routine will be called, which will either write a
bound into bbox[0..5] and return true, or will return false without setting a bound. The bound
is an axis-aligned bounding box (6 floats: xmin, xmax, ymin, ymax, zmin, zmax) in the local coordinate
system.

The generator’s run method will be invoked if and when the renderer needs the contents of the bounds. If
no bounds are supplied to Input and also the generator’s bound() function returns false, no bounds
are available and so the generator will be invoked immediately.

The generator must be dynamically allocated with new, because XRT is going to delete it when the
renderer no longer needs it. Once you pass a particular Generator object to Input(), it belongs to the
renderer, and the caller is no longer responsible for deleting it.

RendererAPI::Input (const char *name)
RendererAPI::Input (const char *name, const float *boundingbox)

Causes the renderer to read commands from a named source, which may be a scene file, a Generator
DSO/DLL, the output of a program or shell command, or simply the string itself. Note that scene file

1.11. Procedural Geometry Generators and Scene Files 31

XRT Technical Reference, Release 1.0.3

readers and generators are really the same thing, since scene files merely invoke generators whose job is
to read that file format.

The first word (up to a space) of name is presumed to be the name of a shared library (DSO or DLL) in the
“generator” path (see Section 4.3.6). The library will be loaded and the following function in the DSO,
with C linkage, will be called to construct and return a Generator object:

extern "C"
{

RendererAPI::Generator *create (const char *command);
}

The Generator returned is then is handled as if were given directly to the renderer, with the remainder of
name (after the first word) supplied as the parameter to the Generator’s run method.

If name is a scene file in the “input” path (see Section Search Paths), then that file name is used as the
sole argument to a Generator whose name is the format of the file. The format is presumed to be the file
extension (i.e., the characters in the filename following the last period). In other words,

Input("teapot.pyg")

is equivalent to

Input("pyg teapot.pyg")

EXAMPLES:

// Read commands from pyg file, immediately
r->Input ("teapot.pyg");

// Note that the above is equivalent to:
r->Input ("pyg teapot.pyg");

1.12 Error Management

Errors may occur during the execution of XRT API calls. These may be caused by incorrect input (such as inconsistent
or invalid data passed to the API routine), system errors (such as not finding a requested texture on disk), or for other
reasons. The default behavior is to print error messages to stderr, or to log them to a file (specified by Attribute
("string error:filename").

Client applications that need custom error handling may provide their own error manager and/or handler to the ren-
derer. An error manager is a class declared in errormanager.h. You cannot subclass it, but you can create an
ErrorManager for each RendererAPI renderer, or create just one ErrorManager and share it among multiple
renderers. Think of it as a wrapper for an error handler. The error handler as a “functor” (a class that behaves like
a function) that is really just a callback function for processing an error or warning. You can create your own error
handler functor from scratch, which can receive the callbacks and perform whatever action you prefer.

The basic sequence is to subclass ErrorHandler to create a low-level handler with the desired behavior, create an
ErrorManager wrapping the handler, then pass the ErrorManager to CreateRenderer.

These classes and methods are all defined in errormanager.h and are within namespace xrt.

ErrorHandler class

class PUBLIC ErrorHandler
{
public:

virtual ~ErrorHandler () {}

32 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

virtual void operator() (ErrCode errcode, const char *msg);
};

This minimal class definition is a simple callback for error messages. Alternative handlers may be created by sub-
classing ErrorHandler and replacing the virtual operator() (and optionally, the virtual destructor, if you add
data members that need to be properly destroyed).

When the callback is made, the errcode is an error code describing the type of error, and msg is the actual error message.
Valid error codes currently consist of: INFO (information only), WARNING (warning, may not really be wrong),
ERROR (probably something wrong, but renderer will attempt to recover), SEVERE (severe, probably unrecoverable,
error), MESSAGE (message, no error, usually for debugging).

EXAMPLE:

using namespace xrt;

class TrivialHandler : public ErrorHandler
{
public:

virtual void operator() (ErrCode code, const char *msg)
{

std::cerr << "Err " << (int)code << ": \"" << msg << "\"\n";
}

};

ErrorManager methods
static ErrorManager *
ErrorManager::Create (ErrorHandler *handler=NULL, int verbosity=VERBOSITY_NORMAL)

Creates an ErrorManager that wraps the given ErrorHandler, using the specified verbosity level.
If handler is NULL, a default handler will be created.

The verbosity may take on one the values: VERBOSITY_QUIET, the handler will only be passed errors;
VERBOSITY_NORMAL, the handler will be passed errors and warnings; VERBOSITY_INFO, the handler
will be passed errors, warnings, and also various informational messages.

int ErrorManager::Verbosity (void) const‘‘

Retrieves the current verbosity of the error manager, one of: VERBOSITY_QUIET,
VERBOSITY_NORMAL, VERBOSITY_INFO.

void ErrorManager::Verbosity (int verbosity)

Changes the verbosity of the error manager. Valid values for verbosity are VERBOSITY_QUIET,
VERBOSITY_NORMAL, or VERBOSITY_INFO.

ErrorHandler * ErrorManager::Handler (void) const

Returns a pointer to the error handler currently associated with the error manager.

void ErrorManager::Handler (ErrorHandler *handler)

Changes the error handler associated with this error manager. This merely replaces the error manager’s
pointer to the error handler, but does not free the previous error handler.

void ErrorManager::Info (const char *format, ...)
void ErrorManager::Warning (const char *format, ...)
void ErrorManager::Error (const char *format, ...)
void ErrorManager::Severe (const char *format, ...)
void ErrorManager::Message (const char *format, ...)

1.12. Error Management 33

XRT Technical Reference, Release 1.0.3

These are the ErrorManager routines that accept errors at various levels. The verbosity setting deter-
mines which will be supressed and which will be passed on to the handler.

RendererAPI methods
static RendererAPI *
RendererAPI::CreateRenderer (const char *type=NULL, ErrorManager *err=NULL)

When a non-NULL pointer to an ErrorManager is passed to CreateRenderer, that error manager
will used by the renderer.

ErrorManager & RendererAPI::Err (void)

Returns a reference to the renderer’s ErrorManager. This reference allows you to manipulate the
renderer’s error manager, for example, by replacing its error handler, changing its verbosity level, or even
directly issuing Error or other calls that will go through the error handler.

Error Manager/Handler Example

using namespace xrt;

class TrivialHandler : public ErrorHandler
{
public:

virtual void operator() (ErrCode code, const char *msg)
{

std::cerr << "Err " << (int)code << ": \"" << msg << "\"\n";
}

};

TrivialHandler *myhandler = new TrivialHandler;
ErrorManager *mymanager = new ErrorManager (myhandler);
RendererAPI *rend = CreateRenderer (NULL, mymanager);
...
delete rend;
delete mymanager;
delete myhandler;

1.13 Example Scene Specification

// Make a NURBS cylinder
void
make_nurbs_cylinder (|XRT|API *r)
{

float uknot[] = { 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4 };
float vknot[] = { 0, 0, 1, 1 };
float Pw[] = { 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, -1, 1, 0, 1,

-1, 0, 0, 1, -1, -1, 0, 1, 0, -2, 0, 2, 1, -1, 0, 1,
1, 0, 0, 1, 1, 0, -3, 1, 1, 1, -3, 1, 0, 2, -6, 2,

-1, 1, -3, 1, -1, 0, -3, 1, -1, -1, -3, 1, 0, -2, -6, 2,
1, -1, -3, 1, 1, 0, -3, 1 };

r->Parameter ("vertex hpoint Pw", Pw);
r->Patch (9, 3, uknot, 0, 4, 2, 2, vknot, 0, 1);

}

int
main (int argc, char **argv)

34 Chapter 1. The XRT C++ Scene API

XRT Technical Reference, Release 1.0.3

{
// Create a renderer object
|XRT|API *r = |XRT|API::CreateRenderer ();

// Check if we created the renderer okay. This might have failed,
// for instance, if a license wasn’t found.
if (r == NULL) {

fprintf (stderr, "Couldn’t create renderer! Exiting...\n");
exit (1);

}

// Set camera and image parameters
r->Attribute ("string projection", "perspective");
float shutter[2] = { 0, 1 };
r->Attribute ("float[2] shutter", &shutter);
int res[2] = { 640, 480 };
r->Attribute ("int[2] resolution", &res);
r->Attribute ("float fov", 45);

// Specify an output image
r->Output ("test.tiff", "tiff", "rgba", "camera");

r->World (); // Signal the end of the camera section

// Set an ambient light
r->Parameter ("float intensity", 0.01);
r->Light ("amb1", "ambientlight");

// Set a point light
r->PushTransform ();
r->Translate (2, -1, 11);
r->Light ("pt1", "pointlight");
r->PopTransform ();

// Set a color attribute
float C[3] = { 0, 1, 0 };
r->Attribute ("color C", &C);

// Set specular-highlight color
float specCol[3] = { 1, 1, 1 };
r->Parameter ("color specularcolor", &specCol);
r->Shader ("surface", "plastic");

// Motion-blurred transformation
r->Motion (2, 0.0, 1.0);
r->Translate (-0.1, -1 ,12); // corresponding to time 0
r->Translate (0.1, -1 ,12); // corresponding to time 1

r->Rotate (50, 1, 0, 0);
make_nurbs_cylinder (r);

r->Render ("camera");

delete r;
}

1.13. Example Scene Specification 35

XRT Technical Reference, Release 1.0.3

36 Chapter 1. The XRT C++ Scene API

CHAPTER

TWO

PYG: A PYTHON-BASED SCENE FILE
FORMAT

Although XRT does not dictate one specific scene file format, it does propose and provide a scene-reading plugin for
a Python 1-based scene file format called Pyg (standing for “Python for Gelato”). This chapter describes the use of
Python as scene input.

2.1 Motivation

In addition to making direct calls to a renderer through the C++ API documented in Chapter The XRT C++ Scene API,
it is often useful to store renderer commands and object models in scene files. Scene files are very helpful in a variety
of circumstances:

• Sometimes it is simply easier to have a program (or human) output an ASCII file of renderer commands, rather
than make direct C++ API calls to a renderer.

• You may not want the scene generation program and scene rendering program to be linked together and resident
in memory at the same time (for reasons including reduction of RAM necessary, execution safety, or licensing
issues).

• By generating parts of a scene once to a file, then having the renderer read the file when needed, you can save
the cost of repeatedly generating the models if the frame must be repeated. The savings can be substantial by
reusing the generated model for all frames of an animation, if the object does not deform or change over time.

• By storing parts of a scene in an ASCII format, it can be convenient to write filters in scripting languages such
as Perl or Python whose function is to transform your scene in some way prior to being given to the renderer.
This kind of trickery can make up for many deficiencies in modeling systems.

The XRT API does not dictate one specific scene file format. Rather, XRT allows user plugins that read scene formats
and make corresponding C++ API calls, as documented in Section 12.

However, XRT does define a scripted scene file format based on the Python language and includes a reader plugin for
this format. This format is named “Pyg”, and files in this format should have the extension .pyg. Thus, the generator
which reads files of this type is pyg.generator.so.

Pyg’s proceduralism, flexibility, and access to Python’s standard library are distinctive and attractive scene-file fea-
tures. Although it is a relatively slow format to parse, this is perhaps not of critical importance in applications where
flexibility is most required. For example, Pyg may be an interesting format for “master” scene-files -its procedural na-
ture can allow sophisticated control over larger subsidiary scene-files (such as geometry) which may be stored in some
moreoptimized form. XRT‘s DSO-based Input call can allow all these different file types to coexist transparently.

1 Python is a widely-available, freely-distributed programming language. See http://www.python.org.

37

http://www.python.org

XRT Technical Reference, Release 1.0.3

Pyg files are Python programs, with associated bindings to allow the Python scripts to call the RendererAPI class
methods. The remainder of this section documents the Pyg binding.

2.2 Basics

Pyg files are Python scripts. The scripts have access to a renderer object called XRTRenderer. This object has a
method corresponding to each C++ API call. For example, corresponding to the C++ Attribute method is:

XRTRenderer.Attribute ("float fov", 45)

Also defined for each API call is a defined function that does not need to be referenced from XRTRenderer, for
example,

Attribute ("float fov", 45)

The above implicitly sets the option for XRTRenderer.

Every C++ API call has an identically-named Python API call that performs the same functions, and which generall
takes the same arguments in the same order. Exceptions are listed below.

Unlike C, there is never need to use pointer indirection to pass data arguments. Float or string arguments may be
passed directly. More complex data (such as points, matrices, or arrays) may be passed as Python sequences. The
sequences may be tuples (delimited by parenthesis), lists (delimited by brackets []), or any other object that obeys the
sequence protocol (such as xrange).

For example, the Attribute to set "C" to a color may be called as:

Attribute ("color C", (1, 0.5, 0.5))

Because the script is Python, it is also legal to assign the sequence to a variable, then pass the variable as the data
argument:

pink = (1, 0.5, 0.5)
Attribute ("color C", pink)

For methods that take parameters (which in C++ would be passed using the Parameter API call), the Python API
allows passing parameters on the API call itself, as alternating strings and values, following the required arguments.

For example, in Python, the Shader call may be called like this (almost exactly mimicking the C++ convention):

Parameter ("float Kd", 0.5)
Parameter ("float Ks", 0.75)
Parameter ("string texturename", "grid.tx")
Shader ("surface", "paintedplastic")

or the parameters may be passed as part of the Shader call itself:

Shader ("surface", "paintedplastic", "float Kd", 0.5, "float Ks", 0.75,
"string texturename", "grid.tx")

2.3 API Calls

Because there is a nearly one-to-one correspondence between the C++ and Python API calls, we provide only brief
functional descriptions of each routine, below. We try to point out differences between the C++ and Python entry
points, where they exist, and refer the reader to Chapter The XRT C++ Scene API for details on the functionality of
each routine.

38 Chapter 2. Pyg: A Python-Based Scene File Format

XRT Technical Reference, Release 1.0.3

Note: The Python bindings for the XRT extensions defined in Chapter The XRT C++ Scene API are not yet fully
implemented.

AppendTransform (matrix m)

Concatenate a matrix (given as a sequence of 16 numbers) onto the CTM.

Attribute (string name, object value)

Set an attribute to the given value. Depending on the attribute being set, the value may be a number, string,
or sequence.

Camera (string name, ...params...)

Creates or replaces a camera.

Optional camera attributes may be specified either by previous calls to Parameter, or as optional alter-
nating name / value pairs at the end of the Camera call itself.

Command (string name)

Invoke a renderer command.

Optional controls for certain commands may be specified either by previous calls to Parameter, or as
optional alternating name / value pairs at the end of the Command call itself.

Comment (string commenttext)

For a renderer that is creating an command archive file, adds a comment in the appropriate output format.
This call is ignored by “live” renderers producing images.

ConnectShaders (string srclayer, string srcparam, string dstlayer, string dstparam)

Connect the named parameters of two shader layers together. This call must occur between
ShaderGroupBegin and ShaderGroupEnd.

Curves (string interp, int ncurves, int nvertspercurve, ...params...)
Curves (int ncurves, int nvertspercurve, int order, sequence knot,
number vmin, number vmax, ...params...)

Creates a Curves primitive. The knot value is a sequence (such as a sequence).

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Curves call itself.

GetAttribute (string name)

Returns the named attribute. Aggregate types, such as points, colors, or arrays, are returned as sequences
whose elements are simple numbers or strings. Note that this is somewhat different than the C++ binding
for GetAttribute (which passes a pointer to store the value, rather than returning it). If the attribute
is not found, the return value will be None.

Input (string name)
Input (string name, sequence boundingbox)

Reads commands from a named source, which can either specify a scene file or the name of a Generator
DSO/DLL. If the boundingbox is specified (as a sequence of six numbers), the input will only occur if
and when the renderer needs to know the contents of the bounding box.

Light (string lightid, string shadername, [string layername,] ...params...)

Creates or replaces a light source. The layer name is optional.

Shader parameters may be specified either by previous calls to Parameter, or as optional alternating
name / value pairs.

2.3. API Calls 39

XRT Technical Reference, Release 1.0.3

LightSwitch (string lightid, boolean onoff)

Turns an existing light on or off for subsequent primitives.

LookAt (number posx, number posy, number posz, number atx, number aty, number atz,
number upx, number upy, number upz)
LookAt (vector pos, vector at, vector up)

Concatenates a viewing transformation matrix onto the current transformation, given a camera position,
target, and “up” vector, either specified as 9 numbers (posx, posy, posz, atx, aty, atz, upx, upy, upz), or 3
sequences containing 3 numeric elements.

Mesh (string interp, int sequence nverts, int sequence verts, ...params...)

Creates a Mesh primitive.

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Mesh call itself.

Unlike the C++ Mesh call, there is no need to pass the number of faces in the mesh - the nverts sequence
gives the number of vertices for each face, and Python can discern the number of faces from the length of
the sequence. The verts parameter is a sequence that contains the vertex indices of all vertices of all faces.
The length of sequence verts should be the sum of all the elements in the nverts sequence.

Modify (string namepattern)

Turns on modify mode, so that subsequent changes affect all attribute states whose "name" attribute
matches the regular expression namepattern.

Motion (number time0, number time1, ...)
Motion (number sequence times)

Starts a Motion block. Note that unlike the C++ binding, you do not need to pass the number of time
values - Python can discern the number of knots directly by the number of parameters or the length of the
sequence.

ObjectBegin (string name)

Creates or replaces a named object.

ObjectEnd ()

Ends the definition of the current object.

ObjectInstance (string name)

Creates an instance of a previously named object.

Output (string name, string format, string dataname, string camera, ...params...)

Specifies an output image for rendered pixels, for a particular camera.

Optional parameters may be specified either by previous calls to Parameter, or as optional alternating
name / value pairs at the end of the Output call itself.

Parameter (string name, object value)

Add a pending parameter, to be used by a subsequent call to Camera, Output, Shader, Light, or a
geometric primitive. Depending on the declaration of the parameter being set, the value may be a number,
string, or sequence.

Patch (string interp, int nu, int nv, ...params...)
Patch (int nu, int uorder, number sequence uknot, number umin, number umax,
int nv, int vorder, number sequence vknot, number vmin, number vmax, ...params...)

40 Chapter 2. Pyg: A Python-Based Scene File Format

XRT Technical Reference, Release 1.0.3

Creates a patch specified by a rectangular array of control vertices.

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Patch call itself.

Points (int npoints, ...params...)

Creates a Points geometric primitive.

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Points call itself.

PopAttributes ()

Restore the attribute state to the values it had when the corresponding PushAttributes call was made.

PopTransform ()

Restore the transformation state to the values it had when the corresponding PushTransform call was
made.

PushAttributes ()

Save the attribute state.

PushTransform ()

Save the transformation state.

Render ([string camera])

Render the scene. The camera name is an optional parameter; if not specified, the default camera is
rendered.

RestoreAttributes (string name)
RestoreAttributes (string name, string attrs)

Replaces some or all of the current attribute state with the saved attribute state with the given name (set
by SaveAttributes).

Rotate (number angle, number x, number y, number z)
Rotate (number angle, vector axis)

Prepend the current transformation with a rotation of angle degrees about the axis defined by (x, y, z). The
axis may also be defined as a sequence of 3 numeric values.

SaveAttributes (string name)
SaveAttributes (string name, string attrs)

Create a named alias for part or all of the current attribute state in a global dictionary of name/attribute
state pairs. The name may be used with RestoreAttributes.

Scale (number x, number y, number z)
Scale (vector scale)

Prepend the current transformation with a scale factor of (sx, sy, sz). The scale values may also be defined
as a sequence of 3 numeric values.

SetTransform (matrix m)
SetTransform (string spacename)

Replace the current transformation, either with the 4x4 matrix supplied as a sequence of 16 numbers, or
with the named transformation.

Shader (string shaderusage, string shadername, [layername,] ...params...)
Shader (string shaderusage)

2.3. API Calls 41

XRT Technical Reference, Release 1.0.3

Sets the shader specified by shadername to be used as the current shader of the given shaderusage. The
optional layername is a string that identifies the shader layer.

Shader parameters may be specified either by previous calls to Parameter, or as optional alternating
name / value pairs.

If only the shaderusage parameter is passed, the shader assignments for that usage are cleared.

ShaderGroupBegin ()

Begin a group of shader layers.

ShaderGroupEnd ()

End a group of shader layers.

Shape (string name)

Creates a custom primitive from a Shape DSO/DLL.

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Sphere call itself.

Sphere (number radius, number zmin, number zmax, number thetamax, ...params...)

Creates a Sphere primitive.

Interpolated parameters may be specified either by previous calls to Parameter, or as optional alternat-
ing name / value pairs at the end of the Sphere call itself.

Translate (number x, number y, number z)
Translate (vector translation)

Prepend a translation onto the CTM, either specified as three numbers (x, y, z), or a sequence containing
3 numeric elements.

TrimCurve (int sequence ncurves, int sequence n, int sequence order,
number sequence knot, int sequence min, int sequence max, number sequence uvw)

Sets the current trim curve.

Note that unlike the C++ binding, there is no parameter giving the number of loops - it is inferred from
the length of the ncurves sequence that gives the number of curves for each loop.

World ()

Marks the end of scene-wide attributes, tags the CTM to be "world" space, and marks the beginning of
per-object information.

2.4 Example Pyg Scene File

This is a Pyg version of the C++ API example listing in Section Example Scene Specification. It features a motion-
blurred NURBS cylinder, and two lights.

def nurbscyl():
uknot = (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4)
vknot = (0, 0, 1, 1)
Pw = (1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, -1, 1, 0, 1, -1, 0, 0, 1,

-1, -1, 0, 1, 0, -2, 0, 2, 1, -1, 0, 1, 1, 0, 0, 1, 1, 0, -3, 1, 1,
1, -3, 1, 0, 2, -6, 2, -1, 1, -3, 1, -1, 0, -3, 1, -1, -1, -3, 1,
0, -2, -6, 2, 1, -1, -3, 1, 1, 0, -3, 1)

Patch (9, 3, uknot, 0, 4, 2, 2, vknot, 0, 1, "vertex hpoint Pw", Pw)

42 Chapter 2. Pyg: A Python-Based Scene File Format

XRT Technical Reference, Release 1.0.3

Attribute ("string projection", "perspective")
Attribute ("float[2] shutter", (0, 1))
Attribute ("int[2] resolution", (640, 480))
Attribute ("float fov", 45)

Output ("test.tif", "tiff", "rgba", "camera")

World ()
Light ("amb1", "ambientlight", "float intensity", 0.1)

PushTransform ()
Translate (1, 0, 9)
Light ("pt1", "pointlight", "float intensity", 1.0)
PopTransform ()

Attribute ("color C", (1, 0.5, 0.5))
Shader ("surface", "plastic", "float Ks", 0.9, "float Kd", 1)

Motion (0.0, 1.0)
Translate (1, 0, 12)
Translate (1, 0, 13)

Rotate (50, 1, 0, 0)
nurbscyl ()

Render ()

Assuming that the above code was in a file called cyl.pyg, it could be rendered with the following command:

xrt cyl.pyg

2.5 Calling xrt from Python

In addition to naming a Pyg file to render on the xrt command line, it is also possible to run an ordinary Python script
that makes XRT API calls. The necessary steps to do this are:

1. The environment variable $PYTHONPATH needs to point to the location of the xrt module, which is stored in
$XRT_HOME/lib.

For Windows:

set PYTHONPATH=$XRT_HOME/lib;$PYTHONPATH

2. The Python file needs to:

import xrt

2.5. Calling xrt from Python 43

XRT Technical Reference, Release 1.0.3

44 Chapter 2. Pyg: A Python-Based Scene File Format

CHAPTER

THREE

XRT ATTRIBUTES AND COMMANDS

This chapter documents all of the attributes recognized by XRT for use with the Camera, Output, and Attribute
API functions.

3.1 Camera Attributes

These attributes set camera and image properties, and are normally set as optional parameters to the Camera com-
mand. They may also be set by Attribute, but in that case apply to the next camera that will be declared.

"string projection" [projectionname]

Sets the type of projection used by the camera. XRT recognizes the projections "perspective" and
“orthographic”. The default is "perspective".

"float fov" [angle]

Sets the vertical field of view used by the camera. This parameter only has an effect if the projection is
"perspective". The angle is measured in degrees. If not set, the default (for a perspective camera) is
90.

"float[4] screen" [xmin xmax ymin ymax]

Specifies the region of "screen" space (points projected onto the z = 1 plane in camera coordinates)
that is mapped to the image area. The x = xmin line in "screen" space corresponds to the left edge of
the raster image, x = xmax to the right edge, y = ymin to the lower edge, and y = ymax to the upper edge.

If this attribute is not set, the default values are: (- frameaspectratio, frameaspectratio, -1, 1)

(The frame aspect ratio is defined as xresolution/ yresolution.)

In other words, the default behavior is that the image is centered around the z axis, with the y dimension
running from -1 to 1, and the x dimension determined by the frame aspect ratio.

"int[2] resolution" [xres yres]

Sets the full resolution (in pixels) of the image to be rendered. The values are integers giving the horizontal
and vertical resolution, respectively. The default is [640 480].

"float pixelaspect" [ratio]

Specifies the aspect ratio (width/height) of the pixels. The default value, 1.0, indicates square pixels.

"float[4] crop" [xmin xmax ymin ymax]

Designates a subregion of the image pixels to be rendered, bounded by xmin, xmax horizontally and ymin,
ymax vertically. The xmin, xmax, ymin, ymax arguments are floating point numbers, expressed in “NDC”

45

XRT Technical Reference, Release 1.0.3

coordinates (that is, with the origin in the upper left corner and with coordinates ranging from 0 to 1 across
and down the image, respectively). The default is for the entire image to be rendered (0 1 0 1).

The pixels output will range in x from ceil(xres*crop[0]) to ceil(xres*crop[1]-1), and in
y from ceil(yres*crop[2]) to ceil(yres*crop[3]-1), inclusive. The values are clamped to
the range [0, xres-1] and [0, yres-1]. Geometry outside the region may be processed and ren-
dered as necessary to ensure that adjacent nonoverlapping crop windows will exactly match up, including
properly filtering across the boundary.

"float near" [n]
"float far" [f]

Sets the near and far clipping planes. Geometry whose z coordinate in camera space is less than near
or greater than far will not be visible. There are also some computations in which "camera" space z
values are normalized using the clip plane values (for example, "screen" space z or the return value of
the shading language depth() function). The default is near = 0.1, far = 1.0e6.

"float[2] shutter" [open close]

Specifies the time range in which the camera’s shutter is open, allowing moving objects to form a blurred
image. Unlike a real camera, longer shutter times will not increase the amount of light exposure or change
the brightness of the image. If open = close, the scene will be rendered with no motion blur. The default,
if no "shutter" attribute is given, is for the scene to be rendered at time 0.0 with no motion blur.

"float fstop" [fstop]
"float focallength" [focallength]
"float focaldistance" [focaldistance]

Collectively, these attributes specify the parameters of the camera that lead to “depth of field” effects,
which simulates a camera lens with a particular focal length and f/stop, focused on objects at a given
distance. The focallength and focaldistance parameters are measured in units of "camera" space. If
fstop is 1e30 (effectively infinity), a pinhole camera will be used, resulting in a perfectly sharp image at
all distances (this is the default behavior if no "fstop" attribute is specified).

Consider the Pyg example:

Camera ("maincam", "fstop", 8, "focallength", 4, "focaldistance", 200)

If the scene was modeled such that "camera" space had units of centimeters, the command above sets
up an f/8, 40mm lens focused on objects 200 cm from the camera.

"string sampler" [samplername]

Sets the antialiasing strategy used by the camera. Valid arguments are:

"uniform"

"stratified"

"int[2] spatialquality" [x y]

Sets the quality level of the spatial antialiasing for geometric edges to a minimum of x * y subregions per
pixel. The default is (2, 2).

"int temporalquality" [n]

Sets the quality level of the temporal antialiasing (motion blur) to a minimum of n different time values
sampled. The default is 16 temporal samples.

"int dofquality" [n]

Sets the quality level of the depth of field to a minimum of n different lens values sampled. The default is
16 different lens samples.

46 Chapter 3. XRT Attributes and Commands

XRT Technical Reference, Release 1.0.3

"int[2] limits:bucketsize" [x y]

Sets the size (in x and y pixels) of the screen buckets that represent units of work for the renderer. The
default is (32, 32). Ordinarily, there should be no reason to override the default, but advanced users may
wish to tune performance on problematic scenes by adjusting this attribute.

"string bucketorder" [direction]

Sets the traversal order in which buckets are rendered on screen. Valid arguments are:

"horizontal"

Top to bottom, and within each row, alternatively, left to right and right to left (this is the
default).

"vertical"

Left to right, and within each column, alternatively, top to bottom and bottom to top. For some
large scenes with a wide-screen aspect ratio, using "vertical" bucket order may render the
scene faster and require much less memory.

"spiral"

Start at the center of the screen and proceed outward in a spiral pattern.

3.2 Output Attributes

This section describes output image attributes, which may be set per output image as optional parameters to the
Output command. They may also be set by Attribute, but in that case apply to the next output that will be
declared.

"string filter" [filtername]

"float[2] filterwidth" [xw yw]

Final image pixels are produced by taking a weighted average of the contribution of nearby subregions,
including those from other pixels. The weights are determined by a pixel filter. The default is to use a
"gaussian" filter with width 2 in each direction. This should be adequate for most images, but you
can override with a custom filter and width (which may be different for each Output specified).

The filter shape may be specified by a combination of the "filter" parameter, which takes a string
giving the name of the filter, and "filterwidth", which takes an array of two floats specifying the x
and y support widths of the filter.

For ordinary data (color, etc.), the filters supported are: "gaussian", "box", "triangle",
"catmull-rom", "sinc", "blackman-harris", "mitchell", and "b-spline". For depth
(z) data only, you may use the filters "min", "max", or "average".

Note that "gaussian", "mitchell", "box", "triangle", "b-spline", and
"blackman-harris" actually get “wider” (and thus blurrier) as the filter width increase. The
"sinc" and "catmull-rom" filters use the width to “window” the existing function, without
changing the shape.

For certain filters, only particular widths make sense - the "catmull-rom" filter should always have
width 4, and "sinc" should have a whole-number width (4 is a good value).

"float gamma" [gamma]
"float gain" [gain]

3.2. Output Attributes 47

XRT Technical Reference, Release 1.0.3

Before passing pixels to the image display driver (and thus prior to any quantization), the renderer trans-
forms all color data according to following formula:

color = (color ∗ gain)1/gamma

The default is gain = 1, gamma = 1.

"int[4] quantize" [zero one min max]
"float dither" [ditheramplitude]

All renderer data is computed and sent to the image driver as floating-point data. For those image formats
that must store pixel values as integers, the image driver is expected to perform the conversion according
to the following formula:

pixelval = round(zero +(one - zero) * floatval + ditheramplitude * random())
pixelval = clamp(pixelval, min, max)

This has the effect of scaling the values so that a value of 0.0 gets an integer output value of zero and a
value of 1.0 gets an integer output value of one, a pseudo-random dither of amplitude ditheramplitude is
added to eliminate banding artifacts, and the integer value is clamped to lie between min and max.

The values zero, one, min, and max are specified, respectively, as an array of 4 ints passed as the
"quantize" parameter to Output. The ditheramplitude value is passed as the float argument to the
"dither" parameter.

It is expected that image drivers honor the convention of using the range of min and max to determine
the bit depth of the resulting output image: if both are <= 255, 8-bit integer (per channel); if both are
<= 65535, 16-bit integer; otherwise 32-bit integer. If all four numeric parameters are 0, then no integer
quantization is performed and a floating-point image is output. If ditheramplitude is 0 (as it should be for
floating-point images), no dithering is performed. If the behavior of any particular image driver deviates
from this convention, it should carefully document its behavior.

The default quantization is (0, 255, 0, 255) and the default dither is 0.5, meaning that output
will be 8 bits per channel.

3.3 Scene-wide Attributes

The attributes described in this section apply to the entire frame being rendered. They should be set only before the
World call, since they cannot be changed for each object.

3.3.1 Ray Tracing and Global Illumination

"int ray:maxdepth" [d]

Sets the maximum ray tracing recursion depth for rays spawned by environment() calls in shaders.
A value of 0 means that no rays will ever be traced by environment(), even if the shaders request it; 1
means that you can see reflections, but not reflections of reflections; 2 means that you can see reflections
of reflections, but not reflections of reflections of reflections; and so on. The default value is 2.

"color ray:background" [c]

Sets the color for rays that hit nothing. The default is black (0,0,0).

48 Chapter 3. XRT Attributes and Commands

XRT Technical Reference, Release 1.0.3

3.3.2 Search Paths

Various external files may be needed as the renderer is running, and unless they are specified as fully-qualified file
paths, the renderer will need to search through directories to find those files. There exist attributes to set the directories
in which to search for these files.

"string path:input" [pathlist]

"string path:texture" [pathlist]

"string path:shader" [pathlist]

"string path:generator" [pathlist]

"string path:imageio" [pathlist]

Sets the search path that the renderer will use for files that are needed at runtime. The different search
paths recognized by XRT are:

"input"

scene files for Input calls, defaults to ".:$XRT_HOME/inputs".

"texture"

texture, shadow, and environment maps, defaults to ".:$XRT_HOME/textures".

"shader"

compiled shaders, defaults to ".:$XRT_HOME/shaders".

"generator"

DSO’s/DLL’s for Input calls, defaults to ".:$XRT_HOME/plugins".

"imageio"

DSO’s/DLL’s for custom image format input/output plugins, defaults to
".:$XRT_HOME/plugins".

Search path types in XRT are specified as colon-separated lists of directory names (much like an execution
path for shell commands). There are two special strings that have special meaning in XRT‘s search paths:

& is replaced with the previous search path (i.e., what was the search path before this state-
ment).

$VAR, ${VAR}, $(VAR), and %VAR% are replaced by the value of environment variable VAR,
if it exists (for any environment variable).

For example, you may set your generator path as follows (using Pyg):

Attribute ("string path:generator", "$HOME/lib/$ARCH:&")

The above statement will cause the renderer to find generator DSO’s by first looking in a directory that is
dependent on the architecture, then wherever the default (or previously set) path indicated.

3.4 Per-object Attributes

The attributes described in this section apply to individual objects, and may be set at any time (before or after World).
They may be changed for each geometric primitive, and may be saved and restored with PushAttributes,
PopAttributes, SaveAttributes, and RestoreAttributes.

3.4. Per-object Attributes 49

XRT Technical Reference, Release 1.0.3

3.4.1 Current Transformation

"matrix transform"

When retrieved by GetAttribute, this returns the current transformation matrix (CTM) that trans-
forms points from local to world coordinates. When the CTM is motion-blurred, the matrix returned will
be the transformation at shutter open time. If the attribute is queried before any camera is declared, the
matrix will be for time 0. This attribute may be retrieved with GetAttribute, but may not be set by
Attribute.

3.4.2 Name

"string name" [""]

Tells the render a user-chosen name for subsequent geometric objects. This allows the renderer to print
the object name when reporting errors.

3.4.3 Geometry Sets

All geometric primitives are in one or more named geometry sets. Objects will only be visible to a particular camera
if it is present in the geometry set that has the same name as the camera, or if it is present in a geometry set named
"camera" (meaning visible to all cameras). The semantics of all other geometry sets are user defined - the most
common use is to specify a group of primitives to ray-trace against, or a set of geometric primitives that comprises an
area light source.

"string geometryset" [setmod]

This attribute changes the list of active geometry sets – that is, which geometry lists subsequently-declared
primitives will be added to. The argument, setmod, is a commaseparated list of named geometry sets. A
+ character leading the name of a geometry set will cause the set to become active. A leading - character
will cause the named set to become inactive. No + or - will cause only the named sets to be active, and
all others inactive.

EXAMPLES:

// Make geometry also appear in the "reflections" set (in addition
// to whichever sets it was in before)
r->Attribute ("geometryset", "+reflections");

// Make geometry NOT appear in the "shadow" set (but still in all other
// sets it was in before)
r->Attribute ("geometryset", "-shadow");

// Make geometry appear only to camera "maincam" (no other sets)
r->Attribute ("geometryset", "maincam");

3.4.4 Surface Appearance Attributes

"color C" [rgb]

Sets the default surface color C that will be available in the shader (if it is not overridden by supplying a
value on the geometric primitive). The default is [1 1 1], indicating that subsequent surfaces are white.

EXAMPLE:

50 Chapter 3. XRT Attributes and Commands

XRT Technical Reference, Release 1.0.3

float C[3] = { 1, 0.5, 0.5 };
r->Attribute ("C", &C);

"color opacity" [rgb]

Sets the default surface opacity that will be available in the shader (if it is not overridden by supply-
ing a value on the geometric primitive). The default is [1 1 1], indicating that subsequent surfaces are
completely opaque.

"string orientation" [orient]

Alters the current orientation (that is, the rule that determines which of the two possible directions is
chosen for the surface normal). The orient parameter is a string indicating one of five possible settings:

"outside"

same as the coordinate system’s handedness (default)

"inside"

opposite the coordinate system’s handedness

"lh"

left handed orientation (regardless of CTM handedness)

"rh"

right handed orientation (regardless of CTM handedness)

"reverse"

change to the opposite of the previous orientation

EXAMPLE:

char *orient = "outside";
r->Attribute ("orientation", &orient);

"int twosided" [onoff]

A nonzero value of onoff (the default) indicates that subsequent geometry should be vis ible from both
sides.

A value of zero for onoff indicates that the renderer may discard subsequent backfacing geometry (i.e.,
those whose normals point away from the camera). For closed, opaque geometry whose surface normals
always point to the outside of the object (or whichever side the camera will be on), backfacing geometry
can be culled without changing the appearance of the image, and thus may be used as an optimization
hint.

3.4.5 Trim Curve Control

"string trimcurve:sense" ["inside"]

Determines whether trim curves applied to Patch primitives will discard the geometry inside the trim
region (if the value is "inside", which is the default), or outside the trim region (if the value is
"outside").

3.4.6 Ray Tracing Controls

"int ray:opaqueshadows" [0]

3.4. Per-object Attributes 51

XRT Technical Reference, Release 1.0.3

When nonzero, forces subsequent objects to be treated as opaque when computing raytraced shadows.
This results in faster ray-traced shadows, since the object need not be shaded to determine if it blocks all
light along the shadow ray. If 0 (the default), the shader will be run at the hit point in order to determine
the opacity of the object for ray traced shadow intersections.

52 Chapter 3. XRT Attributes and Commands

CHAPTER

FOUR

SHADING LANGUAGE

XRT Shading Langage is an implementation of RenderMan(R) Shading Language as defined in the RenderMan(R)
Specification 3.2

Note: The remainder of this chapter is very sketchy and will be fleshed out in future versions

4.1 Unimplemented features

• Message passing is only partially implemented.

• match() is not supported.

4.2 Extensions

RenderMan(R) Specification 3.2 was issued in 2000. Since then, Pixar has extended its shading language at numerous
times without releasing a new specification to the public. However, bits and pieces of information are available here
and there, for instance, in 3Delight manual (http:://www.3delight.com).

This section documents extensions supported by XRT.

TBD.

53

http:://www.3delight.com

XRT Technical Reference, Release 1.0.3

54 Chapter 4. Shading Language

Part III

Using XRT

55

CHAPTER

FIVE

RUNNING XRT

5.1 xrt Command Line Operation

Invoking XRT from the command line is done as follows:

xrt [options] file1 ... filen

Specifying multiple files is identical to specifying a single file that is a concatenation of all the files.

5.2 Environment variables

XRT‘s behavior is influenced by the following environment variables of the command shell:

XRT_HOME

This should point to the XRT installation directory. The default search paths all refer to sub-
directories within the installation directory – for example XRT will search for certain shaders in
$XRT_HOME/shaders. Most critically, the scene file format readers (for at least the startup file) must
be in $XRT_HOME/lib.

57

XRT Technical Reference, Release 1.0.3

58 Chapter 5. Running XRT

CHAPTER

SIX

CAMERAS AND IMAGE OUTPUT

This chapter covers the basic details of how the CG camera is placed in the scene, and the various options that must
be set to determine image resolution and framing, camera attributes, image quality, exactly what data are saved, and
how you can determine the image file types and other properties.

6.1 The Camera

6.1.1 Positioning the Camera

Objects in the scene are positioned relative to "world" space or some other local coordinate system. This is the
result of your having translated or rotated those objects to place them in the scene.

The camera also has a certain position and orientation relative to the world. A special coordinate system called
"camera" space is centered about the camera, with the x axis pointing to the camera’s right, the y axis pointing up,
and the z axis pointing in the direction that the camera is looking. Note that this is a “left handed” camera coordinate
system.

XRT allows two ways to position the camera in the scene:

1. Assume that at the beginning of the frame that you start out in "world" space, set the camera position and
orientation as you would with any other object (relative to "world" space), then make a Camera call. Upon
hitting the World call, the coordinate system will be restored to "world" space. For example:

initially start in world space
SetTransform (...) # Position the camera
Parameter (...) # Set camera parameters
Camera ("main") # Instance a camera in the current position
World () # Restore CTM to be world space again
...

There may be multiple cameras in the scene, although at present, XRT only will create images from the first
Camera declared.

2. If no Camera call is made prior to the World call, then it is assumed that that the initial state was "camera"
space, and that the CTM at the time of the World call represents "world" space. In other words, a lack
of Camera statement implies that all the transformations prior to World are placing the world relative to the
camera. Note that this is the way that certain other API’s (including OpenGL and RenderMan) naturally operate,
so this mode allows for easy translation in cases where only one camera is needed.

If there is no Camera call in the scene (and thus, the renderer will implicitly create a camera once it hits
World), all the optional camera parameters are also settable with the ordinary Attribute command.

59

XRT Technical Reference, Release 1.0.3

initially we are in camera space
SetTransform (...) # Position the world relative to the camera
Attribute (...) # Set camera parameters with Attribute
World () # Establishes world space
...

6.1.2 Camera Projection

A three-dimensional scene is reduced to a two-dimensional image by projection. In any projection, all points along a
“line of sight” correspond to the same 2D location in the final image. XRT supports both perspective (lines of sight
converging at a point) and orthographic (parallel lines of sight) camera projections. Along any line of sight, the closest
object to the camera will be the one seen (although if it is partially transparent, you may also see other objects behind
it).

The projection is selected using the "projection" camera attribute (see Section Camera Attributes). By default,
cameras use the "perspective" projection.

You may set the camera projection by specifying it as a parameter to the Camera call, as in this Pyg example:

Parameter ("string projection", "orthographic")
Camera ("main")

If no Camera command is used (implying that the camera was at the initial scene origin), then the projection may be
set by an Attribute at any point prior to the World command:

Attribute ("string projection", "orthographic")
...
World ()

Perspective projection

Perspective projections are the default camera projection for XRT. Perspective projections are similar to the projection
used in an ordinary camera (though not exactly - real cameras always have additional distortions, but in the rare
cases where this is important, it is usually corrected as an image-processing operation, not during rendering). With a
perspective projection, an object will appear bigger when it is closer to the camera.

You will almost always want to use a perspective projection for “final” images from the main camera. Perspective
projections should also be used when generating shadow maps for light sources that project light from a single point
(like a spotlight).

The perspective projection also responds to the camera parameter "fov"which sets the field-of-view angle in degrees.
For example, the following Pyg command sets a perspective projection with a 30 degree field of view:

Parameter ("string projection", "perspective")
Parameter ("float fov", 30)
Camera ("main")

Orthographic projection

Orthographic projections are primarily used for reproducing certain architectural or engineering drawing methods,
and for creating shadow maps for “distant” light sources (those whose light emanates in parallel rays). With an
orthographic projection, an object will appear the same size no matter what its depth from the camera (see Figure 7.3).

Orthographic projections do not respond to the "fov" parameter. The default orthographic projection is almost
certainly too small a view, and you will need to adjust the "screen" parameter in order to correctly frame your
scene for an orthographic view.

60 Chapter 6. Cameras and Image Output

XRT Technical Reference, Release 1.0.3

6.1.3 Motion Blur

Real cameras have a shutter that stays open for a certain amount of time to expose the film. The longer the shutter stays
open, the more moving objects will appear as blurred streaks on the film. This effect is critical to avoiding strobing
when rendering frames for an animation. The shutter interval may be set with the "shutter" camera attribute,
which takes the opening and closing times. For example,:

Parameter ("float[2] shutter", (0, 1.0/48))
Camera ("main")

instructs the camera to open the shutter at time 0 and close it again 1/48 later.

The units (seconds, frames, etc.) do not matter, but they are expected to be calibrated to the same scale as the times
specified by Motion for any moving or deforming objects.

Most motion picture film cameras leave the shutter open for approximately half of the interframe time. For example,
for a 24 frame-per-second film, the actual shutter interval is typically 1/48 of a second.

For real cameras, the longer the shutter stays open, the more light strikes the film, and therefore the brighter the
resulting image will be. This is not true for the synthetic camera - the image will be no brighter or dimmer, no matter
what the "shutter" attribute specifies.

Moving objects in time

Individual objects may be blurred one of two ways: via transformation blur or deformation blur. For transformation
blur, the object transformations themselves (the position and orientation of the object or part) are changing over time.
For deformation blur, the positions of the vertices comprising the object move their position over time.

To explain how a transformation is blurred, consider a simple translation of 3 units in x:

Translate (3, 0, 0)

If, for example, the object should translate by 3 units at time 0 and by 3.5 units at time 1, the previous Translate
would be replaced by the following motion block:

Motion (0, 1)
Translate (3, 0, 0)
Translate (3.5, 0, 0)

The arguments to the Motion function are a series of n time values (usually two, though it may be any number). It is
then expected that the Motion function be followed by n API calls of the same name, but differing only in parameter
values, each such call corresponding to one of the time values passed to the preceeding Motion call.

Any of the transformation routines (Translate, Rotate, Scale, AppendTransform, SetTransform) may
be blurred in this manner.

It is also possible to blur the shape of the geometry itself by using a Motion call followed by n calls to a geometric
function call (such as Mesh, Patch, etc.). Each geometric call must be the same function and “shape” (e.g., you may
not “morph” a Patch into a Sphere, nor may you change the number of vertices or faces between subsequent Mesh
calls within a motion block). For example:

Motion (0, 1)
Parameter ("vertex point P", (0,0,0, 0,0,1, 1,0,0, 1,0,1))
Patch ("linear", 2, 2)
Parameter ("vertex point P", (0,1,0, 0,0.5,1, 1,0,0, 1,0,1))
Patch ("linear", 2, 2)

In the example above, a bilinear batch is deforming over time. Note that the n time values passed to Motion are
followed by n full geometric primitives - including both parameters as well as the geometric primitive itself.

Multi-segment motion blur

6.1. The Camera 61

XRT Technical Reference, Release 1.0.3

Motion calls usually specify two times, and therefore be followed by two transformation calls or geometric primi-
tives. This results in linear motion blur, in which any particular point on the object moves in a straight line over the
course of a frame. Considering that each final frame will be seen by viewers for only a fraction of a second, linear
motion blur is almost always sufficient.

However, it is sometimes desirable to have an object trace out a more complex path over the course of a frame. As a
practical matter, this is only necessary for objects undergoing rapid rotation (think “helicopter rotor”) for which linear
motion would look obviously wrong. Of course, this is very simple in XRT, merely requiring a larger number of times
in the motion block. For example:

Motion (0, 0.25, 0.5, 0.75, 1)
Rotate (15, 0, 0, 1)
Rotate (30, 0, 0, 1)
Rotate (45, 0, 0, 1)
Rotate (60, 0, 0, 1)
Rotate (75, 0, 0, 1)
Input ("rotor.pyg")

6.1.4 Depth of Field

Depth of field refers to the way objects at a particular distance from the camera appear in sharp focus, while objects
that are closer or farther away will appear blurred. It is a physical phenomenon caused by the finite aperture of a
camera, and other focusing attributes of the lens system.

By default, XRT has depth of field turned off, meaning that all objects are in sharp focus, regardless of their depth
in the scene. The depth of field effect can be turned on and adjusted with three camera attributes: "fstop",
"focallength", and "focaldistance".

The f/stop is the ratio of focal length to lens aperture, much as you would see f/stop settings on a real camera lens - it
lets you control the aperture size. The focal length is the distance from the lens opening to the film plane. The focal
distance is the depth from the camera at which objects appear in sharp focus. Both the focal length and focal distance
are measured in the same units as "camera" space.

For example, if you had constructed your scene so that "camera" space units were meters, then the following
command would specify an f/4 aperture on a 50mm lens, set to focus sharply objects that were 3.6 meters from the
camera:

Parameter ("float fstop", 4)
Parameter ("float focallength", 0.05)
Parameter ("float focaldistance", 3.6)
Camera ("main")

For real cameras, the wider the aperture (i.e., the smaller the f/stop number), the more light enters the camera, and
therefore the brighter the resulting image will be. This is not true for the synthetic camera - the image will be no
brighter or dimmer, no matter what the depth of field settings.

6.1.5 Clipping

In addition to objects being not visible to the camera if it is too far to the right or left, top or bottom (that is, off-screen),
you can also have the camera ignore objects that are too near to, or too far from the camera. This is something that
obviously cannot be done with a real camera, but it can be very useful and often comes in handy with the CG camera.
Objects are ignored if their "camera" space z values are less than the near plane, or if their "camera" space z
values are greater than the far plane.

The z clipping planes can be set with the "near" and "far" camera attributes. For example, to set the hither plane
to z = 0.1 and the yon plane to z = 10,000:

62 Chapter 6. Cameras and Image Output

XRT Technical Reference, Release 1.0.3

Parameter ("float near", 0.1)
Parameter ("float far", 10000)
Camera ("main")

There is some benefit to attempting to set the clipping carefully. Tightly bounding the depth of interest in your scene
can preserve more computational precision in some parts of the rendering process.

6.2 Image Resolution and Framing

6.2.1 Image Resolution

The image resolution refers to the number and shape of the pixels in the final image. The "resolution" camera
attribute (see Section Camera Attributes) can be used to set the x and y resolution, which are whole numbers that give
the size of the final image, in pixels. The "pixelaspect" camera attribute describes the ratio of the width to height
of an individual pixel (the default value, 1.0, indicates square pixels). For example, to render an image with 640 * 480
square pixels:

Parameter ("int[2] resolution", (640, 480))
Parameter ("float pixelaspect", 1)
Camera ("main")

The aspect ratio of the frame is determined by the x and y resolution. Therefore, setting the "resolution" not only
determines the number of pixels in the image, but also the “shape” of the resulting image.

6.2.2 The Screen Window

Once the scene is projected to a 2D plane, only a subset of the plane is actually turned into the image. That subset is
called the screen window. This is directly settable by the "screen" camera attribute, which by default is

(-frameaspectratio, frameaspectratio, -1, 1)

where frameaspectratio = xres/yres.

Since the default is for the screen window to be centered and with the frame aspect ratio, it is usually not necessary to
set the "screen" camera attribute. However, there are two instances where it is critical: (1) For an orthographic cam-
era, the "screen" attribute is almost certainly required to ensure proper framing of the image. (2) the "screen"
attribute can be used to distort or shear the image by making the screen window’s aspect ratio not match the frame
aspect ratio, or by using an off-center screen window.

6.2.3 Crop Window

It is often very useful to render a subset of image pixels, particularly if you are debugging or adjusting part of the scene
and do not wish to wait for the entire image to rerender every time a tweak is made. This is easily accomplished by
setting the "crop" camera attribute, which takes x minimum and maximum, and y minimum and maximum range,
expressed as a portion of the total image (i.e., 0-1). For example, to render the upper-right quadrant of the image only:

Parameter ("float[4] crop", (0.5, 1, 0, 0.5))
Camera ("main")

Even though the crop window is expressed with floating-point numbers, it will be rounded in such a way as to result in
a whole number of pixels. XRT is careful to round and to filter at the edges so that adjacent crop windows will match
up exactly without seams. For example, rendering one image with:

6.2. Image Resolution and Framing 63

XRT Technical Reference, Release 1.0.3

Parameter ("float[4] crop", (0, 1, 0, 0.5))

and a second image of the same scene with:

Parameter ("float[4] crop", (0, 1, 0.5, 1))

will exactly render all pixels, without repetition and without seams if the two images are assembled together.

6.3 Image Output

Once pixel values are derived by filtering the data from the pixel subregions, an image must be written to disk in some
format, or displayed on some device.

6.3.1 Outputs and Channels

Upon rendering, XRT produces one or more image outputs. You can think of each output as a separate image of the
scene (from the same camera). Each output stream may contain different data - for example, one output stream may
consist of color and alpha (RGBA), while another output stream may contain z depth information.

Each image output consists of one or more channels. A channel is a single “pane” of data, such as red or blue. A
greyscale-only image is a 1-channel image, an ordinary color RGB image is a 3-channel image, and an RGBA image
is a 4-channel image.

6.3.2 Image I/O Plugins

There are many different types of image file formats or devices on which to display images. XRT uses programs called
Image I/O plugins to handle image output and display 1. There is one such plugin for each file format or display type.
XRT comes with image I/O plugins that understand how to write TIFF, OpenEXR, JPEG, and Targa files, and how to
display the image on a computer screen ("iv").

The basic way to specify what data goes to which file and in what format is with the Output command:

Output (name, format, dataname, camera, ...params...)

The name is the filename of the file, the format is the file format or display device (actually the name of the imageio
plugin), data is the name of the data to write to the output stream, and camera is the name of the camera from which to
image this output. The optional params (which may be passed beforehand using the Parameter call) control various
aspects of the image output, including format-specific options.

As an example, to instruct XRT to write RGB color data from camera "main" to a TIFF file named "myfile.tif":

Output ("myfile.tif", "tiff", "rgb", "main")

To write an image with RGB and alpha (coverage) as a 4-channel image:

Output ("myfile.tif", "tiff", "rgba", "main")

To display the image “live” to a framebuffer display using XRT‘s iv display tool:

Output ("myfile.tif", "iv", "rgba", "main")

1 Image I/O plugins also handle image input into the renderer.

64 Chapter 6. Cameras and Image Output

XRT Technical Reference, Release 1.0.3

6.3.3 Bit depth, quantization, and dither

XRT computes pixel values with floating-point precision, but not all output formats support floating-point data. There-
fore, the Image I/O plugin may need to convert the raw pixel data to an integer (whole number) representation. This
process is known as quantization.

The Output command takes an optional parameter "quantize" that gives the quantization mapping. The
"quantize" parameter takes an array of four integers that specify the zero level, one level, min, and max values.

When floating-point numbers are converted to integers, the number of bits per channel is known as the bit depth. The
bit depth is computed automatically from the max quantization value: if max ≤ 255, an 8-bit file is created; otherwise,
if max ≤ 65535, a 16-bit file is created; otherwise, a floating-point output file is created. Also, if all of zero, one, min,
and max are 0, floating-point output will be selected.

For example, to write "myfile.tif" as 8-bit integers (this is a typical output format, and also the default):

Parameter ("int[4] quantize", (0, 255, 0, 255))
Output ("myfile.tif", "tiff", "rgb", "main")

If 8 bits per channel are not enough precision for your application, you could generate a 16 bit per channel image with
the following command:

Parameter ("int[4] quantize", (0, 65535, 0, 65535))
Output ("myfile.tif", "tiff", "rgb", "main")

To aid in reducing artifacts that result from the float-to-integer conversion, you can add a random dither to the image.
This is just noise that helps to soften the edges and reduce objectionable banding in the image. The dither amplitude
can be set by Output using the optional parameter "dither". The default dither level is 0.5. The main reason to
override this default is in the case of floating-point images, which do not need dither and therefore should have their
dither set to 0. For example, to output color pixels with full floating-point precision (and no dither):

Parameter ("int[4] quantize", (0, 0, 0, 0))
Parameter ("float dither", 0)
Output ("myfile.tif", "tiff", "rgb", "main")

6.3.4 Filters

As described later in Section Antialiasing and Filtering, selection of a pixel filter can be accomplished by setting the
"filter" (which takes a string giving the filter name) and "filterwidth" (which takes two floats that specify
the x and y support widths of the filter). For example, to use the Catmull-Rom filter with width 3:

Parameter ("string filter", "catmull-rom")
Parameter ("float[2] filterwidth", (3, 3))
Output ("myfile.tif", "tiff", "rgb", "main")

6.4 XRT ‘s Bundled Image I/O Plugins

As discussed in Section Image Output, the Output command takes the name of a Image I/O plugin, which is a plugin
that actually writes the pixels in a particular format. XRT ships with several image I/O plugins (and hence, can write to
those formats). Users or third parties may expand the formats by writing DSO’s/DLL’s. This section describes XRT‘s
bundled image I/O plugin types.

6.4. XRT ‘s Bundled Image I/O Plugins 65

XRT Technical Reference, Release 1.0.3

6.4.1 “tiff” plugin

6.4.2 “jpg” plugin

The bundled "jpg" image I/O plugin saves files in JPEG format. We generally do not recommend rendering images
directly into JPEG format because JPEG is restricted to 8-bit per channel, 3-channel images, and is “lossy.”

6.4.3 “png” plugin

6.4.4 “tga” plugin

6.5 Antialiasing and Filtering

Antialiasing refers to the renderer’s efforts to correctly capture details smaller than a pixel (including geometric edges)
and to give a smooth appearance to the blur that results from motion or depth of field. There are several options that
control the basic time versus quality tradeoffs when performing antialiasing, described below.

Edge antialiasing quality

The most basic antialiasing control is the spatial quality, which describes the number of subpixel regions (in x and y)
comprising each pixel, for example:

Attribute ("int[2] spatialquality", (4, 4))

Dividing pixels into smaller regions, each of which is solved separately, is important to antialiasing because smaller
regions are geometrically simpler (contain fewer objects and edges) and therefore easier to approximate with certain
simplifying assumptions. More subpixel regions will yield higher quality, but will take slightly longer to render.

Filtering

The several spatial subpixel regions must be combined to form the final discrete pixels. To do so with high quality,
each pixel gets a weighted average of nearby regions (including regions outside the boundaries of the pixel. This
process is known as filtering. Filtering has two aspects: the shape of the filter (specified by the name of the filtering
function), and the width of the region to which the filter is applied. The filtering can be set by the "filter" and
"filterwidth" image attributes. A 2 * 2 Gaussian filter (the default) may be specified by:

Parameter ("string filter", "gaussian")
Parameter ("float[2] filterwidth", (2, 2))
Output ("myfile.tif", "tiff", "rgb", "main")

Some people find the 2 * 2 Gaussian filter to be overly blurry. If that is the case, you could try a Gaussian filter with
thinner width (but we wouldn’t recommend using a width of less than 1.5), or you could use a different filter shape.
The Catmull-Rom filter has nice edge sharpening properties, and can be specified as:

Parameter ("string filter", "catmull-rom")
Parameter ("float[2] filterwidth", (3, 3))
Output (...)

On the other hand, if it is important that pixels equally weight all regions and not consider any spatial regions outside
the pixel boundary, then you would want to specify the (infamously low quality) box filter:

Parameter ("string filter", "box")
Parameter ("float[2] filterwidth", (1, 1))
Output (...)

66 Chapter 6. Cameras and Image Output

XRT Technical Reference, Release 1.0.3

Feel free to experiment with different filter functions and window sizes, to achieve a “look” that is right for your
project. The available filters are listed in the formal description of the "filter" attribute in Section Output At-
tributes.

6.5. Antialiasing and Filtering 67

XRT Technical Reference, Release 1.0.3

68 Chapter 6. Cameras and Image Output

CHAPTER

SEVEN

USING SHADERS

7.1 Shader Basics

Shaders are small user-supplied programs that describe materials and lights.

7.1.1 Types and usages of shaders

Every shader has a shader type given in the declaration in the shader’s source code. The shader type may be one of:
surface, displacement, volume, or light. Each type of shader may access a certain set of variables, and
some shader types have restricted access to function calls or syntactic structures (for example, only light shaders may
have emit statements).

At render time, various shaders may be bound to different pieces of geometry for a variety of shader usages. Shader
usage refers to what functionality the shader is expected to provide, and exactly when in the rendering process it is
executed. Shader usages currently include:

• "displacement" shaders may move the surface positions or alter their normals to make “dents” or other
fine shape changes to an object. Displacements are calculated once, are the first shaders to run on any surface,
and are independent of the viewing direction.

• "surface" shaders determine the color and opacity of the object, as viewed from a particular direction.

• "volume" shaders are run after the surface shader, and are allowed to modify the color and/or opacity in order
to account for atmospheric effects along the viewing ray.

• "light" shaders are run when surface or volume shaders have illuminance() statements (or calls to
functions that implicitly run the lights, such as diffuse() and specular()), and determine how much
energy arrives at a point due to a particular light source.

Lights are instantiated with the Light API call, whereas the other shader usages are bound to specific pieces of
geometry with the Shader call. The shader usage must match the shader type declared in the shader’s source code.

All objects are required to have a surface shader, and if none is specified in the scene, a defaultsurface shader
will be used. Objects are not required to have displacement or volume shader, and by default they do not. Objects
are also not required to have any lights, though of course if there are no lights, objects will appear black unless their
surface shaders assign colors regardless of the amount of light shining on them.

7.2 Compiling Shaders with slc

Like many other programming language systems, shaders must be compiled. That is, they must be translated from
human-readable form (“source code”) into an encoded version that is ready for the renderer to process (“object code”).

69

XRT Technical Reference, Release 1.0.3

This extra step also serves another purpose – it allows the shader compiler to check your shader for errors before it is
in the middle of rendering a frame.

XRT shaders are compiled using a utility called slc:

slc [options] sourcefile

The source file may have any name you wish, but by established convention, XRT shader source code is stored in a
file whose name is the same as the name of the shader 1, with the extension .sl. For example, if you had a “plastic”
shader, you would store its source code in the file plastic.sl. slc can compile only one source file per invocation.

Assuming that there is no error found in the shader at compile time, slc will write the resulting object code to a file
called shadername.shader.so, where shadername is the name of the shader.

7.2.1 Command line arguments

The slc program takes the following command line arguments:

-I path

Just like a C compiler, the -I option, followed immediately by a directory name (without a space between
-I and the path), will add that path to the list of directories which will be searched for any files that are
requested by any #include directives inside your shader source. Multiple directories may be specified
by using multiple -I options.

7.2.2 Using the preprocessor

slc uses the “C preprocessor” (/usr/bin/cpp on Linux systems). This allows you to use the usual C/C++ pre-
processor directives such as #include, #define, and so on.

If your shader uses the #include preprocessor directive to “include” another file, slc will need to know where
to find the file. By default, it will only look in the current directory. You can specify extra directories to search for
included files by using the -I command-line argument. For example,:

slc -I/usr/local/shaders/include myshader.sl

will look in the directory /usr/local/shaders/include for any #include‘d files. You can specify multiple
directories with multiple -I arguments.

Since shaders are passed through the preprocessor, you can also define and use macros (with -D or with #define in
the source code) or use “conditional compilation” (#if, #ifdef, #ifndef, #else , #endif).

1 The name of the shader is the name that follows the surface, displacement, volume, or light statement in the shader

70 Chapter 7. Using Shaders

CHAPTER

EIGHT

TEXTURES

8.1 Converting images to texture with maketx

Note: XRT does not support environment maps, shadow maps or high quality filtering. Therefore, the maketx utility
has a very limited scope.

8.1.1 General Options

The following maketx command-line options can be used for any kind of map:

-format name

Specifies the format to write texture files - that is, the ImageIO plugin to use when writing the texture file.
The default is to use TIFF.

-p searchpath

Specifies a searchpath for image files. The searchpath is a colon-separated list of directories to search for
input files. If no searchpath is specified, input files are assumed to either be in the current directory or are
absolute paths.

8.1.2 Texture Maps

The maketx program can be used to convert 2D image files – in any format for which you have an imageio plugin
– to texture files.

maketx [options] imagefile -o texturefile

Options include:

-smode wrapmode

-tmode wrapmode

-mode wrapmode

Sets the default wrap mode of the texture to one of: periodic, black, clamp, or mirror.
The -smode and -tmode flags specify wrapping behavior separately for the s and t direc-
tions, while -mode specifies both at the same time. If none of these options are set, the default
wrap mode will be black.

The wrap mode specifies the behavior of the texture when outside the [0,1] lookup range. Note
that this merely sets the default wrap mode for a texture. A shader may completely override
the wrap mode by using the optional "wrapmode" parameter to the texture() function.

71

XRT Technical Reference, Release 1.0.3

8.2 Texture Formats

This section documents the formats created by maketx. These are the preferred texture formats read by XRT, but
other formats may be used where noted.

8.2.1 TIFF Texture Common Features

maketx uses TIFF files as its preferred texture format. This subsection details the specifications that, unless noted
later, are common to all texture file types (plain textures, shadows, environ- ment maps, etc.). This section is only
describing the output of maketx (i.e., the texture format itself read directly by XRT when rendering), not the input of
maketx (the much wider variety of image formats that may be converted to XRT textures).

8.2.2 Plain Textures

Plain textures have the following additional TIFF tags (using the nomenclature of libtiff):

TIFFTAG_PIXAR_TEXTUREFORMAT (TIFF tag: 33302, type: string)

Contains the value "Plain Texture", to identify an ordinary 2D texture. XRT Image I/O plugins
may read or write this tag using the parameter "string textureformat".

TIFFTAG_PIXAR_WRAPMODES (TIFF tag: 33303, type: string)

Contains the the horizontal and vertical wrap modes, separated by a comma (or just one mode name,
if horizontal and vertical use the same wrap mode). Valid wrap modes include: "black", "clamp",
"periodic", "mirrow". XRT Image I/O plugins may read or write this tag using the parameter
"string wrapmodes".

8.2.3 Other Texture Formats

The previous sections describe the tiled, multiresolution TIFF files that XRT typically uses for texture, environment,
and shadow maps. This is the preferred format, and the format that maketx writes by default. But it is by no means
required.

XRT will directly read alternate texture formats, assuming that the appropriate Image I/O plugin for reading the format
is available.

Using the optional -format command-line argument, you can have maketx write texture files in other formats.

72 Chapter 8. Textures

CHAPTER

NINE

WRITING PLUGINS

9.1 Generator Plugins and Scene File Readers

Input(command) will dynamically load and execute a generator plugin from a DSO/DLL. The renderer will use
a dynamic library named name .generator.so (or, under Windows, name .generator.dll), where name is
the first word (up to a space) of command.

In the case that the command passed to Input is actually the name of a scene file in the “input” search path, then
command is replaced with “format filename” where filename is the full path of the file, and format is the format of the
file (given simply by filename‘s extension). It is presumed that there is a format generator which will read commands
from the named file (as its sole argument) and make the appropriate XRT API calls.

For example,:

Input ("teapot.obj")

is equivalent to:

Input ("obj teapot.obj")

Either of these commands will cause the renderer to load a shared library named “obj.generator.so” (or
“obj.generator.dll” under Windows), which is presumed to be somewhere in the “generator” search path.

Generator DSO/DLL’s are expected to:

1. Implement a class that is a subclass of a Generator class defined as:

class Generator
{
public:

Generator();
virtual ~Generator();
virtual void run (RendererAPI *renderer, const char *params);

};

The subclass, which publicly inherits from Generator, must define a run method. Optionally, it may im-
plement a replacement constructor and destructor, as well as any additional data or function methods that its
implementation requires.

2. Contain a C-linkage function called createGenerator that returns a pointer to a newly allocated and con-
structed Generator object. Using the EXPORT macro (defined in export.h) ensures that the renderer can
correctly reference the symbol.

So, for example, below is a skeleton to implement a generator that acts as a scene reader for “.obj” files. The
compiled C++ module should be stored in a file named “obj.generator.so” (or “obj.generator.dll”).

73

XRT Technical Reference, Release 1.0.3

class ObjReader : public RendererAPI::Generator
{
public:

ObjReader();
virtual ~ObjReader();
virtual void run (RendererAPI *renderer, const char *filename);

};

ObjReader::ObjReader (void)
{

// Implementation of ObjReader constructor goes here
}

ObjReader::~ObjReader (void)
{

// Implementation of ObjReader destructor goes here
}

void
ObjReader::run (RendererAPI *renderer, const char *filename)
{

// Here we read "Obj" from filename, and make RendererAPI calls
// to renderer in order to communicate the commands in the file
// to |XRT|.

}

extern "C"
{

EXPORT RendererAPI::Generator* createGenerator (const char *command)
{

return new ObjReader;
}

};

9.2 Shape Plugins

Shape(name) will dynamically load and execute a shape plugin from a DSO/DLL. The renderer will use a dynamic
library named name .shape.so (or, under Windows, name .shape.dll), which is presumed to be somewhere in
the “plugins” search path.

74 Chapter 9. Writing Plugins

Part IV

Appendices

75

CHAPTER

TEN

GLOSSARY

Aliasing Undesirable image artifacts related to the rendering process inadequately sampling and representing high
frequencies in the image.

Alpha An extra channel in an image giving a measure of coverage of a pixel, to aid in image compositing. An alpha
of 1.0 means fully opaque; 0.0 means fully transparent.

Ambient occlusion A technique that uses ray-tracing to compute, for each point in the scene, how much of the
hemisphere above the point is exposed to the sky (and thus should be illuminated by “ambient” light) versus
how much of the hemisphere is occluded by local objects (and is thus not ambiently illuminated).

Anisotropic Something that has a directional dependence. When talking about surface reflectivity, it refers to a
BRDF that depends on the rotational orientation of a surface, as well as the angles of the incoming and outgoing
light.

Antialiasing Ways of combating aliasing artifacts. Generally encompasses capturing geometric edges without “jag-
gies,” motion blur, depth of field, and otherwise adequately sampling high frequencies in the image.

API Applications Programming Interface. An API is a set of data types and procedures that define the public interface
to a library or program.

Artifact A visible imperfection in a computer graphics image, particularly one that betrays the fact that the image
is CG and is not a real photograph or physical artwork. Aliasing, polygonal silhouettes, oversimplistic shading,
and Mach bands are typical examples of artifacts.

Associated alpha For pixels represented by RGB and alpha (coverage), the practice of premultiplying the RGB
values by the alpha values. This makes the computations for image compositing simpler.

Attribute Properties that apply to either the scene as a whole or to individual geometric primitives. Examples of
attributes include image resolution, object color, shader assignments, and so on.

Backfacing Surfaces whose surface normals face away from the camera viewpoint.

Bake / Baking To turn something that would be computed on-the-fly (perhaps repeatedly or expensively) into a static
representation that could cheaply used repeatedly at runtime.

For example, texture baking usually means taking shader computations that would expensively be done on
every frame, computing the results once and storing them in a texture map, then replacing the expensive shader
operations with a simple texture lookup.

Beauty pass The ultimate rendering pass that pulls all the prior passes together to form the final image.

Blinn’s law The observation, common in the early days of CGI but first stated by Jim Blinn, that an artist is willing
to wait a fixed amount of time for an image to render, and that faster hardware or algorithms simply results in
more complex images that take the same amount of time to render.

77

XRT Technical Reference, Release 1.0.3

BRDF Bidirectional reflectance distribution function. A BRDF is a formula whose inputs are the incoming (L) and
outgoing (V) directions on a surface, and its output is the portion of light coming from L that is scattered toward
V . A BRDF is the heart of a local illumination model.

Caustics Areas of intense light that result from curved reflectors or refractors (objects that act like mirrors or lenses,
respectively) that focus light.

CGI Computer graphics imagery, especially computer graphics imagery that is produced for use in motion pictures
(such as for special effects).

Channel A single “pane” of data in an image. For example, an RGBA image consists of four channels: red, green,
blue, and alpha.

CPU Central processing unit - traditionally, the main computational unit that executes software on a computer.
Examples of CPUs include the Intel Pentium 4 and the AMD Opteron. See also GPU.

CTM Current transformation matrix - at any stage of reading scene input, the 4 * 4 matrix that describes the cur-
rent “local” coordinate system (relative to the world). Transformation routines (such as AppendTransform,
Rotate, etc.) modify the CTM. The CTM may be temporarily saved and restored with PushTransform
and PopTransform, and also implicitly by PushAttributes and PopAttributes.

Deformation blur Motion blur of the shape of an object, by blurring the positions of the object’s control vertices.
This can describe movement that is not “rigid.” (See transformation blur.)

Depth of field The property of physical cameras that only a limited range of distances can be in focus at any one
time.

Displacement bound Extra space added to the bounding box of an object to account for the fact that displacement
might make the primitive “poke out” of the original bounds.

Displacement shading Allowing shaders to alter the shape of surface geometry, usually to add fine detail.

DLL Dynamically linked library - a library file that may be loaded dynamically by a program at runtime. XRT‘s
ImageIO, Generator, and shadeop plugins are implemented as DLLs. “DLL” is a name specific to MS Windows;
in the Unix world, these are called “DSOs.”

DSO Dynamic shared object - a library file that may be loaded dynamically by a program at runtime. XRT‘s Im-
ageIO, Generator, and shadeop plugins are implemented as DSO’s. Note that DSO’s are called DLL’s under MS
Windows.

Fill light A dim, usually nonspecular, light that fills in areas of a scene not illuminated by a key light.

Frame-parallel rendering Using multiple machines on a network to each render a separate frame of an animation.
Contrast to network-parallel rendering and multithreading.

Frontfacing Surfaces whose surface normals face toward the camera viewpoint.

Gamma correction A nonlinear scaling of the values in an image to compensate for the property of all physical
display devices that they react to input values in a non-linear way.

Geometric primitive An individual piece of geometry, such as a Patch, Mesh, Sphere, and so on.

Geometry set A named collection of geometric primitives, either corresponding to objects visible to a camera, or a
group that may be ray traced. An object may be present in any number of geometry sets. The Attribute
"string geometryset" controls which geometry sets are active.

Global illumination Calculation of how light affects an entire scene, especially the contribution of light reflected
between surfaces (as opposed to coming straight from a light source). In XRT, this refers to ray-traced shadows
and reflections, indirect illumination, caustics, and ambient occlusion.

Global variable In RSL, any of the built-in variables describing the shading situation, for example, P, N, u, and so
on.

78 Chapter 10. Glossary

XRT Technical Reference, Release 1.0.3

GPU Graphics processing unit - the main computational unit of a programmable graphics card, such as the NVIDIA
Quadro FX line. In addition to quickly drawing shaded triangles, GPU’s are very good at performing mathemat-
ical computations in a highly parallelized manner. See also CPU.

HDRI Short for High Dynamic Range Imagery, it refers to images that can capture the entire dynamic range of a real
scene. In short, a floating-point image or environment map, as opposed to using 8-or 16-bit integers to represent
light levels in an image.

IBL Short for Image-Based Lighting.

Image-based lighting Lighting a scene by data captured from a real-world scene, usually in the form of an HDRI
environment map.

Indirect illumination Light that reflects diffusely off an object before illuminating another object in the scene.

Isotropic Means “the same in all directions.” When referring to surface reflectivity, it means a BRDF that depends
only on the angles of the incoming and outgoing light relative to the surface normal, without regard to the
rotational orientation of the surface about its normal.

Key light A major source of illumination in a scene, usually resulting in hard shadows and specular highlights.

Local illumination model A formula that, given the directions and intensities of light impinging on a surface, com-
putes the amount of light scattered away from the surface in a particular direction (such as toward the camera).
Synonyms: Local reflection model, BRDF.

Local reflection model Same as Local illumination model.

Metadata Annotations embedded in a shader that do not change the operation of the shader code itself, but describe
its contents. XRT allows metadata about a shader as a whole, as well as metadata specific to each of the shader’s
parameters.

MIP-map A texture map for which the results of filtering the texture with a series of larger and larger filters (typically
sized in powers of two) has been precalculated and stored with the map, in order to speed render-time texture
access. “MIP” actually stands for “multum in parvo” (Latin for “much in little”).

Modeler A program that allows users to specify the shape of geometric objects and to place objects, lights, and
cameras in a virtual scene.

Moore’s law The observation that computing power (as measured by the time it takes to perform certain fixed bench-
mark calculations on new computers) increases exponentially over time, and that historically it has doubled
every 18 months or so over a very long time span. Contrast with Blinn’s law.

Motion block A transformation or geometric primitive that changes over time. Specifically, a Motion statement
(with n time values passed to it), followed by exactly n identical transformations or by exactly n geometric
primitives (of the same time), each corresponding to the position or shape at one of the time values, respectively.

Motion blur The property of physical cameras that objects that move relative to the camera leave a streak in pho-
tographs, proportional to the length of time the camera shutter is open.

Multithreading Using multiple CPU’s or GPU’s in a single computer to contribute to the computation of a single
rendered frame. Contrast to frame-parallel rendering and network-parallel rendering.

Network-parallel renderin Using multiple machines on a network to contribute simultaneously to rendering a single
frame. Contrast to frame-parallel rendering and multithreading.

Parametric coordinates. The (typically) two values that uniquely specify a point on a parametric surface, such as a
Patch.

Pass A final image may require several separate invocations of the renderer - passes - which may include generating
shadow depth maps, reflection maps, ambient occlusion images, caustic photon maps, diffuse databases for
subsurface scattering, etc. The ultimate pass that pulls all the prior passes together to form the final image is
called the beauty pass.

79

XRT Technical Reference, Release 1.0.3

Primitive Short for geometric primitive.

Primitive Variables Data attached to a geometric primitive (per primitive, facet, corner, or vertex), interpolated by
the renderer, and that can be accessed in a shader.

Projection A transformation which “flattens” space by removing one dimension, for example, converting points in a
3D space into positions on a 2D object (such as a plane or the surface of a sphere).

Radiosity A global illumination method involving solution by finite element methods. Radiosity solutions usually
make the assumption that all surfaces are perfectly diffuse. Sometimes radiosity refers colloquially to any global
illumination algorithm.

Ray casting A method of global visibility determination, that computes the intersection of viewing “rays” with scene
geometry for any purpose.

Ray tracing A method of rendering. Ray tracing solves hidden surfaces, shadows, and reflections by computing the
intersection of viewing “rays” and scene geometry.

Reference geometry A description of geometry in a canonical pose. As the “real” geometry is deformed by anima-
tion, the reference geometry can be used for shading calculations to ensure that any patterns computed by the
shader will stick to the surface as it deforms.

Renderer A program that takes a description of a scene (camera, objects, materials, lights) and produces an image.

RSL RenderMan(R) Shading Language.

Scanline rendering A family of rendering methods that involve projecting geometry into screen space, and handling
geometric primitives in image order.

Shadeop Short for shading operation, shadeops are the built-in operators and functions in RSL (in other words, the
operators and functions that the SL compiler already knows about).

Shader A computer program that describes the appearance of a surface, light, or volume.

Shader type One of surface, displacement, volume, or light, or shader (indicating a generic shader).
The type of a shader is given in its declaration (in the shader source) and determines which global variables it
may access and which operations it may legally perform (for example, light shaders may not alter P, and volume
shaders may not emit light).

Shader usage One of surface, displacement, volume, or light, the shader usage explains in what stage of
the rendering pipeline a shader is executed. The shader loaded for a given usage must have a matching shader
type (or, if a generic shader, must still only perform operations legal for the usage).

Shading quality A measure of how frequently color values are computed on surfaces. Larger values imply that
shading is computed more frequently, therefore more total shading calculations will be performed (with the
expected increase in cost). Smaller values will result in fewer total invocations of the shader, thus rendering in
less time and memory, but with lower image quality.

Space A synonym for “coordinate system.”

Subsurface scattering Illumination that scatters internally through a translucent material such as marble or skin,
often re-emerging quite far from where it entered the material.

Texel TEXture ELement. A texel is one pixel in a texture map (including shadow and environment maps).

Texture mapping Taking colors (or other data) from a stored image file and applying the pattern to a surface to give
added detail.

Transformation The placement of an object (or light, camera, etc.). Transformation includes translation, rotation,
and scaling of an object, and is accomplished with the API routines described in Section 2.5.

Transformation blur Motion blur of the position/orientation of an object. This can describe “rigid” motion of an
object but does not allow an object do bend or deform. (See deformation blur.)

80 Chapter 10. Glossary

INDEX

Aliasing, 77
Alpha, 77
Ambient occlusion, 77
Anisotropic, 77
Antialiasing, 77
API, 77
Artifact, 77
Associated alpha, 77
Attribute, 77

Backfacing, 77
Bake / Baking, 77
Beauty pass, 77
Blinn’s law, 77
BRDF, 77

Caustics, 78
CGI, 78
Channel, 78
CPU, 78
CTM, 78

Deformation blur, 78
Depth of field, 78
Displacement bound, 78
Displacement shading, 78
DLL, 78
DSO, 78

Fill light, 78
Frame-parallel rendering, 78
Frontfacing, 78

Gamma correction, 78
Geometric primitive, 78
Geometry set, 78
Global illumination, 78
Global variable, 78
GPU, 78

HDRI, 79

IBL, 79

Image-based lighting, 79
Indirect illumination, 79
Isotropic, 79

Key light, 79

Local illumination model, 79
Local reflection model, 79

Metadata, 79
MIP-map, 79
Modeler, 79
Moore’s law, 79
Motion block, 79
Motion blur, 79
Multithreading, 79

Network-parallel renderin, 79

Parametric coordinates., 79
Pass, 79
Primitive, 79
Primitive Variables, 80
Projection, 80

Radiosity, 80
Ray casting, 80
Ray tracing, 80
Reference geometry, 80
Renderer, 80
RSL, 80

Scanline rendering, 80
Shadeop, 80
Shader, 80
Shader type, 80
Shader usage, 80
Shading quality, 80
Space, 80
Subsurface scattering, 80

Texel, 80
Texture mapping, 80
Transformation, 80
Transformation blur, 80

81

	I Introduction
	II The Major APIs
	The XRT C++ Scene API
	Basic Concepts
	Parameters
	Renderers, Cameras, Outputs, and Rendering
	Attributes
	Transformations
	Shaders and Lights
	Motion Blur
	Geometric Primitives
	Constructive Solid Geometry
	Object Instancing
	Procedural Geometry Generators and Scene Files
	Error Management
	Example Scene Specification

	Pyg: A Python-Based Scene File Format
	Motivation
	Basics
	API Calls
	Example Pyg Scene File
	Calling xrt from Python

	XRT Attributes and Commands
	Camera Attributes
	Output Attributes
	Scene-wide Attributes
	Per-object Attributes

	Shading Language
	Unimplemented features
	Extensions

	III Using XRT
	Running XRT
	xrt Command Line Operation
	Environment variables

	Cameras and Image Output
	The Camera
	Image Resolution and Framing
	Image Output
	XRT`s Bundled Image I/O Plugins
	Antialiasing and Filtering

	Using Shaders
	Shader Basics
	Compiling Shaders with slc

	Textures
	Converting images to texture with maketx
	Texture Formats

	Writing Plugins
	Generator Plugins and Scene File Readers
	Shape Plugins

	IV Appendices
	Glossary
	Index

